219 research outputs found

    Walverine: A Walrasian Trading Agent

    Get PDF
    TAC-02 was the third in a series of Trading Agent Competition events fostering research in automating trading strategies by showcasing alternate approaches in an open-invitation market game. TAC presents a challenging travel-shopping scenario where agents must satisfy client preferences for complementary and substitutable goods by interacting through a variety of market types. Michigan's entry, Walverine, bases its decisions on a competitive (Walrasian) analysis of the TAC travel economy. Using this Walrasian model, we construct a decision-theoretic formulation of the optimal bidding problem, which Walverine solves in each round of bidding for each good. Walverine's optimal bidding approach, as well as several other features of its overall strategy, are potentially applicable in a broad class of trading environments.trading agent, trading competition, tatonnement, competitive equilibrium

    UTILIZING SAR AND MULTISPECTRAL INTEGRATED DATA FOR EMERGENCY RESPONSE

    Get PDF
    Satellite images are used widely in the risk cycle to understand the exposure, refine hazard maps and quickly provide an assessment after a natural or man-made disaster. Though there are different types of satellite images (e.g. optical, radar) these have not been combined for risk assessments. The characteristics of different remote sensing data type may be extremely valuable for monitoring and evaluating the impacts of disaster events, to extract additional information thus making it available for emergency situations. To base this approach, two different change detection methods, for two different sensor's data were used: Coherence Change Detection (CCD) for SAR data and Covariance Equalization (CE) for multispectral imagery. The CCD provides an identification of the stability of an area, and shows where changes have occurred. CCD shows subtle changes with an accuracy of several millimetres to centimetres. The CE method overcomes the atmospheric effects differences between two multispectral images, taken at different times. Therefore, areas that had undergone a major change can be detected. To achieve our goals, we focused on the urban areas affected by the tsunami event in Sendai, Japan that occurred on March 11, 2011 which affected the surrounding area, coastline and inland. High resolution TerraSAR-X (TSX) and Landsat 7 images, covering the research area, were acquired for the period before and after the event. All pre-processed and processed according to each sensor. Both results, of the optical and SAR algorithms, were combined by resampling the spatial resolution of the Multispectral data to the SAR resolution. This was applied by spatial linear interpolation. A score representing the damage level in both products was assigned. The results of both algorithms, high level of damage is shown in the areas closer to the sea and shoreline. Our approach, combining SAR and multispectral images, leads to more reliable information and provides a complete scene for the emergency response following an event

    Ultrafast Flow Quantification With Segmented K-Space Magnetic Resonance Phase Velocity Mapping

    Get PDF
    Magnetic resonance (MR) phase-velocity mapping (PVM) is routinely being used clinically to measure blood flow velocity. Conventional nonsegmented PVM is accurate but relatively slow (3–5 min per measurement). Ultrafast k-space segmented PVM offers much shorter acquisitions (on the order of seconds instead of minutes). The aim of this study was to evaluate the accuracy of segmented PVM in quantifying flow from through-plane velocity measurements. Experiments were performed using four straight tubes (inner diameter of 5.6–26.2 mm), under a variety of steady (1.7–200 ml/s) and pulsatile (6–90 ml/cycle) flow conditions. Two different segmented PVM schemes were tested, one with five k-space lines per segment and one with nine lines per segment. Results showed that both segmented sequences provided very accurate flow quantification (errorsflow conditions, even under turbulent flow conditions. This agreement was confirmed via regression analysis. Further statistical analysis comparing the flow data from the segmented PVM techniques with (i) the data from the nonsegmented technique and (ii) the true flow values showed no significant difference (all p values≫0.05). Preliminary flow measurements in the ascending aorta of two human subjects using the nonsegmented sequence and the segmented sequence with nine lines per segment showed very close agreement. The results of this study suggest that ultrafast PVM has great potential to measure blood velocity and quantify blood flow clinically. © 2002 Biomedical Engineering Society

    Accurate Quantification of Steady and Pulsatile Flow With Segmented K-Space Magnetic Resonance Velocimetry

    Get PDF
    Conventional non-segmented magnetic resonance phase velocity mapping (MRPVM) is an accurate but relatively slow velocimetric technique. Therefore, the aim of this study was to evaluate the accuracy of the much faster segmented k-space MRPVM in quantifying flow. The axial velocity was measured in four straight tubes (inner diameter: 5.6–26.2 mm), using a segmented MRPVM sequence with seven lines of k-space per segment. The flow rate and flow volume were accurately quantified (errorssteady (r2=0.99) and pulsatile flow (r2=0.98), respectively. The measured velocity profiles and flow rates from the segmented sequence agreed with those from the non-segmented (p\u3e0.05). Changing the slice thickness or the field of view did not affect the accuracy of the measurements. The results of this study suggest that fast, segmented MRPVM can be used for accurate flow quantification

    Accurate Quantification of Steady and Pulsatile Flow With Segmented K-Space Magnetic Resonance Velocimetry

    Get PDF
    Conventional non-segmented magnetic resonance phase velocity mapping (MRPVM) is an accurate but relatively slow velocimetric technique. Therefore, the aim of this study was to evaluate the accuracy of the much faster segmented k-space MRPVM in quantifying flow. The axial velocity was measured in four straight tubes (inner diameter: 5.6–26.2 mm), using a segmented MRPVM sequence with seven lines of k-space per segment. The flow rate and flow volume were accurately quantified (errorssteady (r2=0.99) and pulsatile flow (r2=0.98), respectively. The measured velocity profiles and flow rates from the segmented sequence agreed with those from the non-segmented (p\u3e0.05). Changing the slice thickness or the field of view did not affect the accuracy of the measurements. The results of this study suggest that fast, segmented MRPVM can be used for accurate flow quantification

    Ultrafast Flow Quantification With Segmented K-Space Magnetic Resonance Phase Velocity Mapping

    Get PDF
    Magnetic resonance (MR) phase-velocity mapping (PVM) is routinely being used clinically to measure blood flow velocity. Conventional nonsegmented PVM is accurate but relatively slow (3–5 min per measurement). Ultrafast k-space segmented PVM offers much shorter acquisitions (on the order of seconds instead of minutes). The aim of this study was to evaluate the accuracy of segmented PVM in quantifying flow from through-plane velocity measurements. Experiments were performed using four straight tubes (inner diameter of 5.6–26.2 mm), under a variety of steady (1.7–200 ml/s) and pulsatile (6–90 ml/cycle) flow conditions. Two different segmented PVM schemes were tested, one with five k-space lines per segment and one with nine lines per segment. Results showed that both segmented sequences provided very accurate flow quantification (errorsflow conditions, even under turbulent flow conditions. This agreement was confirmed via regression analysis. Further statistical analysis comparing the flow data from the segmented PVM techniques with (i) the data from the nonsegmented technique and (ii) the true flow values showed no significant difference (all p values≫0.05). Preliminary flow measurements in the ascending aorta of two human subjects using the nonsegmented sequence and the segmented sequence with nine lines per segment showed very close agreement. The results of this study suggest that ultrafast PVM has great potential to measure blood velocity and quantify blood flow clinically. © 2002 Biomedical Engineering Society

    Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules.

    Get PDF
    We systematically varied conditions of two-dimensional (2D) agarose gel electrophoresis to optimize separation of DNA topoisomers that differ either by the extent of knotting, the extent of catenation or the extent of supercoiling. To this aim we compared electrophoretic behavior of three different families of DNA topoisomers: (i) supercoiled DNA molecules, where supercoiling covered the range extending from covalently closed relaxed up to naturally supercoiled DNA molecules; (ii) postreplicative catenanes with catenation number increasing from 1 to ∼15, where both catenated rings were nicked; (iii) knotted but nicked DNA molecules with a naturally arising spectrum of knots. For better comparison, we studied topoisomer families where each member had the same total molecular mass. For knotted and supercoiled molecules, we analyzed dimeric plasmids whereas catenanes were composed of monomeric forms of the same plasmid. We observed that catenated, knotted and supercoiled families of topoisomers showed different reactions to changes of agarose concentration and voltage during electrophoresis. These differences permitted us to optimize conditions for their separation and shed light on physical characteristics of these different types of DNA topoisomers during electrophoresis

    Interplay of DNA supercoiling and catenation during the segregation of sister duplexes

    Get PDF
    The discrete regulation of supercoiling, catenation and knotting by DNA topoisomerases is well documented both in vivo and in vitro, but the interplay between them is still poorly understood. Here we studied DNA catenanes of bacterial plasmids arising as a result of DNA replication in Escherichia coli cells whose topoisomerase IV activity was inhibited. We combined high-resolution two-dimensional agarose gel electrophoresis with numerical simulations in order to better understand the relationship between the negative supercoiling of DNA generated by DNA gyrase and the DNA interlinking resulting from replication of circular DNA molecules. We showed that in those replication intermediates formed in vivo, catenation and negative supercoiling compete with each other. In interlinked molecules with high catenation numbers negative supercoiling is greatly limited. However, when interlinking decreases, as required for the segregation of newly replicated sister duplexes, their negative supercoiling increases. This observation indicates that negative supercoiling plays an active role during progressive decatenation of newly replicated DNA molecules in vivo

    The Complete Spectrum of Yeast Chromosome Instability Genes Identifies Candidate CIN Cancer Genes and Functional Roles for ASTRA Complex Components

    Get PDF
    Chromosome instability (CIN) is observed in most solid tumors and is linked to somatic mutations in genome integrity maintenance genes. The spectrum of mutations that cause CIN is only partly known and it is not possible to predict a priori all pathways whose disruption might lead to CIN. To address this issue, we generated a catalogue of CIN genes and pathways by screening ∼2,000 reduction-of-function alleles for 90% of essential genes in Saccharomyces cerevisiae. Integrating this with published CIN phenotypes for other yeast genes generated a systematic CIN gene dataset comprised of 692 genes. Enriched gene ontology terms defined cellular CIN pathways that, together with sequence orthologs, created a list of human CIN candidate genes, which we cross-referenced to published somatic mutation databases revealing hundreds of mutated CIN candidate genes. Characterization of some poorly characterized CIN genes revealed short telomeres in mutants of the ASTRA/TTT components TTI1 and ASA1. High-throughput phenotypic profiling links ASA1 to TTT (Tel2-Tti1-Tti2) complex function and to TORC1 signaling via Tor1p stability, consistent with the role of TTT in PI3-kinase related kinase biogenesis. The comprehensive CIN gene list presented here in principle comprises all conserved eukaryotic genome integrity pathways. Deriving human CIN candidate genes from the list allows direct cross-referencing with tumor mutational data and thus candidate mutations potentially driving CIN in tumors. Overall, the CIN gene spectrum reveals new chromosome biology and will help us to understand CIN phenotypes in human disease

    Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of microRNAs

    Get PDF
    It is emerging that nanotopographical information can be used to induce osteogenesis from mesenchymal stromal cells from the bone marrow and it is hoped that this nanoscale bioactivity can be utilized to engineer next generation implants. However, the osteogenic mechanism of surfaces is currently poorly understood. In this report, we investigate mechanism and implicate bone morphogenic protein (BMP) in up-regulation of RUNX2 and show that RUNX2 and its regulatory miRNAs are BMP sensitive. Our data demonstrates that osteogenic nanotopography promotes co-localization of intergrins and BMP2 receptors in order to enhance osteogenic activity and that vitronectin is important in this interface. This provides insight that topographical regulation of adhesion can have effects on signaling cascades outside of cytoskeletal signaling and that adhesions can have roles in augmenting BMP signaling
    corecore