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Abstract

TAC-02was the third in a series of Trading Agent Competition events fostering
research in automating trading strategies by showcasing alternate approaches in an
open-invitationmarket game. TAC presents a challenging travel-shopping scenario
where agents must satisfy client preferences for complementary and substitutable
goods by interacting through a variety of market types. Michigan’s entry, Walver-
ine, bases its decisions on a competitive (Walrasian) analysis of the TAC travel
economy. Using this Walrasian model, we construct a decision-theoretic formu-
lation of the optimal bidding problem, which Walverine solves in each round of
bidding for each good. Walverine’s optimal bidding approach, as well as several
other features of its overall strategy, are potentially applicable in a broad class of
trading environments.

�Revised and extended version of a paper to appear in the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-03).
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1 Introduction

The annual Trading Agent Competition (TAC) provides a periodic forum for exploring
the interaction of strategies for a challenging market game. The original motivation for
TAC was to encourage agent researchers interested in trading to focus on a common
problem, involving multiple interrelated goods traded simultaneously in a strategically
complex setting (Wellman et al., 2001). The TAC series has succeeded in attracting
significant participation (approximately 20 entries per year, a majority of which clearly
reflect a substantial effort), and most importantly, producing a sizable body of ideas
and results, as reflected in over a dozen published reports to date.1

After operating the competition for its first two years, the University of Michigan
entered TAC for the first time in 2002. TAC-02, organized by the Swedish Institute
of Computer Science (SICS), was held in Edmonton, Canada, in July. The field of
19 entrants included many strong contenders from the previous year (Wellman et al.,
2003)—several of which were significantly improved (Greenwald, 2003a)—as well as
some newcomers.

Our agent, “Walverine”, gets its name from the University of Michigan team mas-
cot (the wolverine—a variety of weasel), and Léon Walras, the 19th-century economist
who first envisioned the concept of interacting markets in price equilibrium (Walras,
1954). Walverine’s overall approach can be characterized as “competitive analysis”—
forming expectations based on a model where agents behave competitively (Arrow
and Hahn, 1971). From such assumptions about the other agents’ behavior, Walver-
ine formulates a decision-theoretic model of its bidding problem, and issues its offers
accordingly.

Embodying the competitive analysis approach in a software trading agent has led
us to develop several novel techniques. Although worked out in detail specifically for
the TAC environment, we expect that the underlying ideas will prove applicable to a
broad range of trading contexts.

2 Trading Agent Competition

2.1 TAC Rules

The TAC game presents a travel-shopping task, where traders assemble flights, hotels,
and entertainment into trips for a set of eight probabilistically generated clients. Clients
are described by their preferred arrival and departure days (�� and ��), the premium
(hp) they are willing to pay to stay at the “Towers” (T) hotel rather than “Shanties”
(S), and their respective values (��� ��� ��) for three different types of entertainment
events. The agents’ objective is to maximize the value of trips for their clients, net
of expenditures in the markets for travel goods. The three categories of goods are
exchanged through distinct market mechanisms.

Flights. A feasible trip includes air transportation bothways, comprising an inflight
day � and outflight day �, � � � � � � �. Flights in and out each day are sold
independently, at prices determined by a stochastic process. The initial price for each

1http://auction2.eecs.umich.edu/researchreport.html
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flight is � � ����� ����, and follows a random walk thereafter with an increasingly
upward bias.

Hotels. Feasible trips must also include a room in one of the two hotels for each
night of the client’s stay. There are 16 rooms available in each hotel each night, and
these are sold through ascending 16th-price auctions. Agents submit bids for vari-
ous quantities, specifying the price offered for each additional unit. When the auction
closes, the units are allocated to the 16 highest offers, with all bidders paying the price
of the lowest winning offer. Each minute, the hotel auctions issue quotes, indicating the
16th- (ASK) and 17th-highest (BID) prices among the currently active unit offers (Wur-
man et al., 1998). Starting at minute four, one of the hotel auctions is selected at
random to close, with the others remaining active and open for bids.

Hotel bidders are also subject to a “beat-the-quote” rule (Wurman et al., 2001),
requiring that any new bid offer to purchase at least one unit at a price of ASK��, and
at least as many units at ASK� � as the agent was previously winning at ASK.

Entertainment. Agents receive an initial random allocation of entertainment tickets
(indexed by type and day), which they may allocate to their own clients or sell to other
agents through continuous double auctions (Friedman and Rust, 1993). The entertain-
ment auctions issue BID and ASK quotes representing the highest outstanding buy and
lowest sell offer, respectively, and remain open for buying and selling throughout the
12-minute game duration. A client may sell tickets that it does not own, but must pay
a penalty of 200 per ticket for any “short sales” not covered by the end of the game.

A feasible client trip � is defined by an inflight day in �, outflight day out� , hotel
type (��, which is 1 if T and 0 if S), and entertainment types (��, a subset of ��� �� ��).
The value of this trip is given by

		�
 � ����� ���	��� � in� �� ��� � out��
 � hp ��� �
�
����

��
 (1)

At the end of a game instance, the TAC server calculates the optimal allocation of
trips to clients for each agent, given final holdings of flights, hotels, and entertainment.
The agent’s game score is its total client trip utility, minus net expenditures in the TAC
auctions.

2.2 Lessons from Previous TAC Events

In designing Walverine, we had the benefit of learning from two years of observing
the efforts of other TAC agent designers (Stone and Greenwald, 2003; Wellman et al.,
2001). We outline some of the lessons that particularly influenced our thinking about
the competition.

First, agents are generally quite competent. Our initial game design embedded
several key issues we thought relevant for agent strategy, and despite the lack of prior
discussion, most of the entrants recognized these, and moreover discovered others we
did not anticipate. The second year’s entrants explicitly built on methods disclosed
after the first competition, and disclosed these advances as well. Thus, there was good
reason to expect the agents to get better, and that the level of competition would be
especially high in the final stage of the tournament.
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Second, agents tend to improve dramatically during the course of the tournament.
At the time of the preliminary rounds (qualifying and seeding), entrants are still debug-
ging their implementations and refining their designs. Therefore, patterns observed in
early games may not be strong evidence for behavior in the finals.

Third, calculating optimal allocations and marginal valuations is feasible, and im-
portant (Greenwald and Boyan, 2001; Stone et al., 2001).

Finally, the hotel market is sufficiently competitive that depending on prices to be
reasonable without even monitoring them is a viable strategy. This fact was evidenced
most dramatically by the success of livingagents in TAC-01 (Fritschi and Dorer, 2002;
Wellman et al., 2001).

3 Walverine Framework

Based on these observations, we decided early in our design process to commit to the
hypothesis that the TAC domain resembles a competitive economy. That is, we take
as a basic presumption that the aggregate behavior of eight trading agents could be
successfully approximated by a model in which each behaves according to the dictates
of perfect competition. This does not mean we literally believe that the agents act as
perfect competitors (they patently do not), nor that they should (indeed, Walverine tries
to behave strategically). It is merely a modeling assumption chosen to balance accuracy
and tractability.

One consequence of adopting a model of this sort is that we did not depend sub-
stantially on empirical data as input to our trading strategy. This is an advantage in
light of the observation above that the preliminary rounds tend to differ qualitatively
from the finals. Although Walverine does have some free parameters that could have
benefited by tuning for performance, we deliberately resisted this approach in favor of
maintaing a commitment to our analytical models.

3.1 Architecture

Walverine’s functional architecture is depicted in Figure 1. Dividing the agent into
modular components facilitated the development of Walverine’s strategy, as well as its
software realization, especially given the number of programmers involved (all of the
coauthors). We partitioned the bidding decisions into one strategy for flight and hotel
acquisition, and another for entertainment trading. Assuming the availability of only
one direct API connection to the TAC server, we routed all bid messages and query
results through a local proxy standing between SICS and our trading components. An
optimization server answers queries about optimal packages and marginal values to
both strategy components, given information about transactions, and actual and pre-
dicted prices. Although there is no direct communication between the flight/hotel and
entertainment modules, information supplied by each is reflected implicitly in the re-
sults of optimization queries provided to the other.

The discussion below focuses on flight and hotel bidding, which dominates the
game and exemplifies our competitive analysis approach. Walverine’s entertainment
strategy takes a completely different tack, discussed in Section 7.
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Flight & Hotel Buyer

Entertainment Dealer

OPT Proxy
SICS
TAC
Server

Figure 1: Walverine architecture.

3.2 Skeletal Trading Strategy

Analysis early in the design process suggested that it was not worthwhile to delay flight
purchases, as the expected price increase exceeded the likely benefit of improved hotel
information by the time hotels begin to close and reveal meaningful prices. Therefore,
Walverine commits to flights as soon as possible, based on an assessment of expected
optimal trips.

Specifically, upon game start, Walverine retrieves client information and initial
flight prices. It then generates an initial prediction of hotel prices (details in Section 4),
and calculates the optimal trip at these prices. It then issues bids immediately to pur-
chase the flights for these trips. In the TAC-02 finals, Walverine purchased all 16 flights
within the first four seconds of the game, on average.

After the initial flight purchases, decision making is effectively divided into dis-
crete rounds, delimited by the release of hotel price quotes each minute, with one ran-
dom hotel auction closing each minute starting at minute four. Therefore, at 3:00 and
each minute mark thereafter, Walverine executes its flight/hotel bidding-round routine,
which comprises the following sequence of steps:

1. Update price quotes and holdings for flights and hotels.

2. Recalculate hotel price predictions based on updated information.

3. Recalculate optimal package, and purchase any indicated flights beyond those
currently held.

4. Calculate marginal values of hotel rooms.

5. Generate hotel bids based on these marginal values.

Price quotes and holding information (transactions) are retrieved directly from the
TAC server. Walverine’s methods for price prediction and bid generation are discussed
in Sections 4 and 6, respectively. Calculating optimal packages and marginal values is
the domain of our optimization server, discussed in the next section.
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3.3 Optimal Packages and Marginal Values

Walverine’s formulation of the trip optimization problem takes the general form:

��
�

		�
 � �	�� ��
� (2)

where 		�
 �
��

��� 		�
�
, for �� the trip assigned to client �, with 		� �
 given by

(1) specialized for this client. The expression �	�� ��
 captures the cost of purchasing
any travel goods (flights, hotels, entertainment) required for trips �, beyond the agent’s
holdings, at estimated or actual prices ��. Unavailable items (i.e., closed hotels) are
considered to have an effective price of�.

This optimization problem can be expressed as an integer linear program (Stone
et al., 2001). We formulate the model in AMPL (Fourer et al., 1993), and calculate
results using the CPLEX solver.2 Walverine’s optimization server wraps this optimiza-
tion core with an interface for setting parameters and issuing queries, communicating
with the strategy components through sockets.

Queries supported by the optimization server include:

Best Package Return the optimal package of goods, given current holdings and es-
timated or actual prices. This addresses the completion problem (Boyan and
Greenwald, 2001), which has come to be recognized as a core problem in TAC
bidding.3

Marginal Value Calculate the marginal (incremental) value of each additional unit
of available goods. The server accommodates separate queries for hotel and
entertainment goods.

We describe “hedged” variants on these queries in Section 5.
Let 	�	�� 
 denote the value of the best package, assuming we hold  additional

units of good �, and taking ��� ��. The marginal value4 of the �th unit of � is simply
	�	�� �
�	�	�� ���
. The standard marginal-value query for hotels performs this cal-
culation for every open hotel, � � � � �. The marginal-value query for entertainment
performs it for every entertainment good, � � � and � � �.

4 Price Prediction

Walverine predicts hotel prices based on a literal application of its presumption that
TAC markets are competitive. Specifically, it calculates the Walrasian competitive
equilibrium of the TAC economy, defined as the set of prices at which all markets

2http://www.ilog.com
3Walverine’s best-package query actually solves a special case, the acquisition problem (Boyan and

Greenwald, 2001), as it accounts for opportunities to buy goods at (estimated) prices but neglects the pos-
sibility of selling entertainment. Note that our version employs linear prices, in contrast with the more
general priceline approach in which the agent faces varying estimated prices depending on the number of
units demanded.

4Several previous TAC agents employed some concept of marginal value (Aurell et al., 2002; Stone and
Greenwald, 2003; Stone et al., 2001), although the technical definitions applied have varied substantially.
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would clear, assuming all agents behave as price takers (Hildenbrand and Kirman,
1976). Since flight prices are exogenous, it is only hotel prices that may adjust to bal-
ance supply and demand. Walverine attempts to find a set of hotel prices that would
support such an equilibrium, and returns these values as its prediction for the hotels’
final prices.

4.1 Calculating Competitive Equilibrium

Let � be a vector of hotel prices, consisting of elements ���� denoting the price of hotel
type � � ��� �� on day � � ��� �� �� ��. Let ����	�
 denote agent �’s demand for
hotel �� day � at these prices, with its vector of such demands written as ��	�
. The
aggregate demand is simply the sum of agent demands, �	�
 �

�
� �

�	�
.
Demand for a given hotel is a function of all hotel prices, as changing the price

of any hotel can affect the agent’s choice of trips, and thus the demand for any other
hotel. The interconnection of markets renders this a problem in general equilibrium (as
opposed to partial equilibrium), and prevents us from analyzing each hotel in isolation.

Note that an agent’s demand also depends on flight prices as well as its clients’
preferences. We leave these factors implicit in our notation since both flight prices and
preferences are considered constant with respect to the equilibrium calculation. We
provide full detail on our demand calculations in Section 4.2 below.

Prices � constitute a competitive equilibrium if aggregate demand equals aggregate
supply for all hotels. Since there are 16 rooms available for each hotel on each day, we
have in competitive equilibrium, �	�
 � ��.

General equilibrium theory develops technical conditions on agent preferences un-
der which such an equilibrium can be guaranteed to exist (Hildenbrand and Kirman,
1976; Mas-Colell et al., 1995). However, these conditions do not hold in the TAC en-
vironment, and indeed the TAC economy may not possess a competitive equilibrium.
Reasons include the fundamental discreteness and satiability of agents’ demands for
hotel rooms. Nevertheless, we may still expect to find approximate equilibria (i.e.,
prices inducing relatively small imbalances of supply and demand), and these may
serve adequately for our prediction purpose.

The classic method for determining competitive prices is the tatonnement proto-
col, an iterative price adjustment procedure originally conceived by Walras (Arrow
and Hahn, 1971). Tatonnement begins with an arbitrary price vector, and revises price
elements respectively up or down as there is an excess of demand or supply. This pro-
cedure is guaranteed to converge on equilibrium prices when they exist, assuming in
addition that demand obeys the gross substitutes property (Mas-Colell et al., 1995). In
the TAC domain, however, preferences for hotel rooms exhibit strong complementari-
ties. This represents a patent violation of gross substitutes, as raising the price for one
hotel can easily decrease demand for another, for example in the case of two hotels of
the same type on adjacent days.

Notwithstanding these theoretical impediments, Walverine searches for a compet-
itive equilibrium using tatonnement. Starting from an initial guess � �, it iteratively
computes a revised price vector according to:

�
��� � �

� � ��	�	��
 � ��

 (3)
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We experimented with several schemes for varying the adjustment rate �, settling
on an exponential decay. The process tended to converge quickly on an approximate
equilibrium, with no detectable sensitivity to particular parameter choices. The version
employed in the TAC-02 tournament happened to set �� � �
��� � �
���. We ran
tatonnement for 300 iterations, although the bulk of the adjustment generally occurred
within the first 10% of that.

4.2 Calculating Expected Demand

A central part of the tatonnement update (3) is determination of demand as a function
of prices. This is straightforward if client preferences are known, as it corresponds
essentially to an instance of the best-package query described in Section 3.3.5 Whereas
we do know the preferences of our own eight clients, we have no direct knowledge
about the 56 clients assigned to the other seven agents.

Therefore, we partition the demand problem into a component from Walverine
(��), and one from the other agents:

�	�
 � ��	�
 � � ��	�



We calculate ��	�
 using a simplified version of the best-package query (ignoring
entertainment holdings). In place of � ��	�
, we attempt to estimate its expectation,
exploiting our knowledge of the distribution from which client preferences are drawn.
If agent demand is separable by client,

� �� ��	�
� � �

�
�	�
���

��	�
���	�


�

 (4)

Since client preferences are i.i.d.,

� �� ��	�
� � �� �� ���	�
��	�
� 


At the beginning of the game when there are no holdings of flights and hotels, the
agent optimization problem is indeed separable by client, and so (4) is justified. At
interim points when agents hold goods, the demand optimization problem is no longer
separable. However, since we are ignorant about the holdings of other agents, we have
no particular basis on which to determine how (4) is violated, and so we adopt it as an
approximation.

It remains to derive a value for � ���	�
��	�
�. Our solution follows directly from
the distribution of clients. Preferred arrival and departure days 	��� ��
 are drawn
uniformly from the ten possible arrival/departure pairs:

� ��������	�
� � �
�
�


������

� �������	�
� 
 (5)

For a given 	�� � ��
, the only remaining uncertainty surrounds the hotel premium hp.
We observe that the optimal choice of travel days is independent of hp, conditional

5Indeed, we originally validated our prediction concept by applying it to data from the TAC-01 finals,
taking the client preferences as given.
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on hotel choice. Let ��	�� � �� � �
 denote the optimal trip for the specified day pref-
erences, conditional on staying in hotel � (T or S). We can calculate this trip by tak-
ing into account the flight prices, prices for hotel �, day deviation penalties, and ex-
pected entertainment bonus (see Section 4.3). Note that the optimal trip for preferences
	�� � ��
 must be either ��	�� � �� �T
 or ��	�� � �� � S
. Let �� denote the net valuation
of ��	�� � �� � �
, based on the factors above but not accounting for hp.

Hotel premiums are also drawn uniformly, hp � � ���� ����. Since T and S differ
only in the bonus hp, we can determine the choice based on the relation of �� and � :

� �

�
� if � � �� 	 ���
� if � � �� � ��

If instead �� � � ��� � ���, then the choice of hotel depends on the actual hp. The
uniform distribution of hp entails that the probability of S being the optimal choice is

��	� � �
 �
� � �� � ��

���



Given the choice of trip days and hotel, the demand for this case is established.
We aggregate these cases (weighting by probability of hotel choice if applicable) using
(5), yielding the overall demand per client. Multiplying by 56 gives us � �� ��	�
�, and
combining with our own demand, finally, the overall expected demand estimate.

4.3 Expected Entertainment Surplus

The derivation above deferred detailed explication of our accounting for entertainment
bonuses in evaluating alternative trips. We employ estimates of net entertainment con-
tribution as a function of arrival and departure days. Our analysis is based on the
distribution of client entertainment preferences, along with the empirical observation
(reported by the livingagents team (Fritschi and Dorer, 2002)) that entertainment tick-
ets tend to trade at a price near 80. We verified that this indeed obtained during the
TAC-01 finals, and refined the estimate by distinguishing the entertainment tickets on
conjested days 2 and 3 (average price 85.49), from tickets on less conjested days 1 and
4 (average price 76.35). Our analysis proceeds by assuming that agents can buy or sell
any desired quantity at these prices.

Consider a client staying for � days, with given entertainment values. Its maximal
entertainment surplus would be obtained by allocating its most valuable ticket to the
cheapest day of its trip if profitable (that is, if the entertainment value exceeds the
average price for that day), then if � 	 �, its second most valuable to the next cheapest
day, and finally, if � 	 �, its least valuable to a remaining day.

Let � denote the cost of the �th least expensive day for the given trip � � � �
���	�� �
. The expected entertainment surplus of the trip, then, is given by

��
�����
���

���	�
� (6)

where ���	
 denotes the expected value of allocating the �th most valuable ticket to a
day costing . Three ticket values are drawn independently from a uniform distribution.
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Expected Entertainment Surplus
Arrive:Depart TAC-01 Prices TAC-02 Prices

1:2, 4:5 74.7 78.1
1:3, 3:5 101.5 112.2
1:4, 2:5 106.9 120.1
1:5 112.7 121.0
2:3, 3:4 66.2 76.8
2:4 93.0 110.9

Table 1: Expected contributions from entertainment, based on prices from TAC-01 and
TAC-02 finals, respectively. Walverine employs these summary values in its demand
calculations.

Given � i.i.d. draws � � ��� ��, the �th greatest is less than � with probability

�
�����
��� 	�
 �

����
���

�
�

�

��
� � �

�� �

���� �
�� �

�� �

��



The expectation of this �th order statistic � �����
��� is given by

�
�
�
�����
���

�
� � � 	�� �


�
��

�

�� �

�



We need to determine the expected value of the �th ticket, net of its cost . The
expected surplus of the �th order statistic with respect to , given that  is between the
�th and 	� � �
st order statistic (� � �) is

�
�
�
�����
��� �  � �

�����
����� �  � �

�����
���

�
� �

�
�
�����
��� � 

�

 (7)

The probability of the condition in (7) is

��	� �����
����� �  � �

�����
��� 
 � �

�����
�����	
 � �

�����
��� 	



Using these expressions, we can sum over the possible positions ofwith respect to
the order statistics (positions in which value minus cost is positive) to find the expected
value of allocating the �th best ticket to a day costing :

���	
 � �
�
��

	
�� �

�������
��� � 


�

�
��
���

	
�
�
�
�������
���

�
� 


 	
�
�������
����� 	
� �

�������
��� 	




�

providing the valuewe need to evaluate the expected entertainment surplus for a trip (6).
The results of these calculations for each of the ten possible trips are presented in

Table 1. In the 2002 competition, Walverine used the average prices from the TAC-
01 finals. It turned out that the entertainment prices observed in the TAC-02 finals
were somewhat lower (averaging 74.18 on days 2 and 3, 72.79 on days 1 and 4), thus
supporting greater entertainment surplus.
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4.4 Interim Price Prediction

The description above covers Walverine’s procedure for initial price prediction. Once
the game is underway, there are several additional factors to consider.


 Agents already hold flight and hotel goods.


 Flight prices have changed.


 Hotel auctions have issued price quotes, providing a source of information about
actual demand.


 Some hotel auctions are closed, precluding further acquisition of these rooms.

Walverine adopts a fairly minimal adjustment of its basic (initial) price prediction
method to address these factors. It continues to employ initial flight prices in best-trip
calculations, and ignores its own flight and hotel holdings in calculating own demand
for open hotels. For closed hotels, it does fix its demand at actual holdings. Since we
do not know the holdings of other agents, we make no attempt to account for this in
estimating their demand. This applies even to closed hotels—in the absence of infor-
mation about their allocation, Walverine’s tatonnement calculations attempt to balance
supply and demand for these as well.

Given price quotes, we modify the price-adjustment process to employ ASK (or
final price of closed auctions) as a lower-bound price for each hotel. This constraint is
enforced within each iteration of the tatonnement update (3).

4.5 Prediction Quality

After the TAC-02 finals, we undertood a comprehensive comparative study of price-
prediction methods employed by the participating agents. The results of this study
are presented in a separate report (Wellman et al., 2002). Among other conclusions,
the investigation indicates that Walverine’s equilibrium method produced initial price
predictions more accurate than those of any other TAC-02 agent.

On the other hand, we did not systematically evaluate the quality of interim price
predictions, and suspect that Walverine has considerable room for improvement there.
In principle, price quotes provide significant evidential value regarding uncertain de-
mand, and Walverine fails to exploit this information directly in these terms.

5 Price Hedging

Walverine’s equilibrium analysis results in a point price prediction for each hotel auc-
tion. In reality, prices are inherently uncertain, and thus decisions about bidding and
trip choice should take into account the potential deviations from any point estimate.
Some agents, such as ATTac (Schapire et al., 2002) and RoxyBot (Greenwald, 2003b),
explicitly generate and use predictions in the form of distributions over prices. Others,
including Walverine, generate point predictions but then make decisions with respect
to distributions around those estimates.
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The greatest source of risk stems from the possibility that a hotel’s price might
greatly exceed the estimate, causing the agent to pay a painfully high price or fail to
obtain its room(s). Thus, Walverine assigns a small outlier probability, �, to the event
that a given hotel will reach an unanticipated high price. In the event the hotel is an
outlier, we take its price to be��	���� ���
, where �� is the estimated price of the hotel
if it is not an outlier (i.e., according to the equilibrium price-prediction procedure,
described above). Walverine’s overall price distribution is thus defined by a set of
disjoint events with exactly one outlier, at probability � for each of the open hotel
auctions, and the residual probability for the event of no outliers.

We apply this price distributionmodel in our initial calculation of optimal trips, on
which we base our starting flight purchases. The resulting choice hedges for the poten-
tial that some price will deviate significantly from our baseline prediction. The typical
effect of our hedging method is to reduce the duration of some trips, thus decreasing
Walverine’s exposure to hotel price risk.

Walverine’s optimizer employs this same outlier model in computing responses
to its hedged marginal value query. A hedged marginal value is simply a weighted
average of marginal values, where 	� is calculated with respect to each outlier event
(as well as the no-outlier event), with the results weighted according to the outlier
probability �. Because it involves repeated optimization with respect to a variety of
price and quantity combinations, hedged marginal value is the most computationally
intensive operation performed by Walverine.

In the TAC-02 tournament, Walverine employed the setting � � �
��. This is
one of the few free parameters in its flight/hotel strategy, along with the outlier price
expression itself. Although we made no systematic effort to tune this parameter, we
did verify empirically that � � �
�� significantly outperformed � � � (improvement
was on the order of 300 points per game).

6 Optimal Bidding

An agent behaving competitively would bid in hotel auctions by offering to buy units at
their marginal values. Again assuming separable clients, thismeans that each agent will
submit an offer for a unit at marginal value for each hotel and each client. Under price
uncertainty, the bidding decision problem is more complicated (Greenwald, 2003b),
but a competitive agent would still not take into account its own effect on prices.

Walverine assumes that other agents bid competitively and itself bids strategically
by calculating an optimal set of bids taking into account its own effect on hotel prices.
This amounts to placing bids that maximize our expected surplus given a distribution
from which other bids in the auction are drawn.

6.1 Generating Bid Distributions

As for our price-prediction algorithm, we model the seven other agents as 56 individual
clients, again using the zero-holdings assumption to render the computation tractable.
Our approach is to generate a distribution of marginal valuations assuming each of the
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	�� � ��
 pairs, and sum over the ten cases to generate an overall distribution val for the
representative client.

For a given 	��� ��
 pair, we estimate the value of a given room (�� �) as the differ-
ence in expected net valuation between the best trip assuming room 	�� �
 is free, and
the best trip of the alternative hotel type � �. In other words, the value of a given room
is estimated to be the price above which the client would prefer to switch to their best
trip using the alternate hotel type.

Setting the price of (�� �) to zero and that of all other hotels to predicted prices, we
calculate best packages ��	�� � �� � �
, ��	��� �� � ��
 and their associated net valuations
�� and ��� as in Section 4.2. If 	�� �
 �� ��	��� �� � �
, we say that val� is zero,6

otherwise it is the expected difference in net valuations:

val � ��	�� � � �� � hp
�

val� � ��	�� �� � � � hp



Since hp � � ���� ����, these expressions represent uniform random variables:

� � �� � hp � � �� � �� � ���� � � �� � ���� (8)

�� � � � hp � � ��� � � � ��� �� � � � ����


For each 	��� ��
 we can thus construct a cumulative distribution Val����� repre-
senting the marginal valuation of a given hotel room. In general, val����� will include
a mass at zero, representing the case where the room is not used even if free. Thus, we
have

Val�����	
 �

��


� if  � ��	�� �

���
���

if ��	�� �
 �  � �

� if  	 �

where � and � are the lower and upper bounds, respectively, of the corresponding
uniform distribution of (8).

The overall valuation distribution for a representative client is the sum over ar-
rival/departure preferences,

Val	
 �
�

��

�

������

Val�����	



Finally, it will also prove useful to define a valuation distribution conditional on
exceeding a given value  . For  	  ,

Val	 �  
 �
Val	
� Val	 


�� Val	 


 (9)

6.2 Computing Optimal Bids

After estimating a bid distribution,Walverine derives an optimal set of bidswith respect
to this distribution. Our calculation makes use of an order statistic, Val ���	
, which

6As for �, we omit the arguments for �� , �� , and day � where these are apparent from context.
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represents the probability that a given value  would be �th highest if inserted into a
set of � independent draws from Val.

Val���	
 � ��� Val	
���� Val	
�����
�

�

� � �

�

We can also define the conditional order statistic, Val���	� 
, by substituting the con-
ditional valuation distribution (9) for Val in the definition above.

Once hotel auctions start issuing price quotes, we have additional information about
the distribution of bids. If� is the hypothetical quantity won for Walverine at the time
of the last issued quote, the current ASK tells us that there are ���� bids from other
clients at or above ASK, and �� � 	�� � �
 � �� � � at or below (assuming a bid
from every client, including zero bids). We therefore define another order statistic,
!�, corresponding to the �th highest bid, sampling ���� bids from Val	� � ASK
 as
defined by (9), and �� � � bids from Val.

Note that our order statistics are defined in terms of other agents’ bids, but we are
generally interested in the �th highest value in an auction overall. Let � � be the number
of our bids in the auction greater than �. We define !� so as to include our own bids,
and employ the (� � ��)th order statistic on others, Val������	�
, in calculating !�.

Given our definitions, the probability that a bid � will be the �th highest is the
following:

!�	�
 �
�������
���

Val���	��	�
 � Val�����������	� � ASK

 (10)

We characterize the expected value of submitting a bid at price � as a combination
of the following statistics, all defined in terms of !�.


 !�		�
: Probability that � will win and set the price.


 !�
�� �

���
��� !�	�
: Probability that � will win but not set the price


 "�� � � �
���

��� #�	
 � 
��: Median price if we submit an offer �.


 "�	 � � �
��	

��� #�	
 � 
��: Median price if we do not bid.

Before proceeding, we assess the quality of our model, by computing the probabil-
ity that the 16th bid would be above the quote given our distributions. If this probability
is sufficiently low: (!�

�		ASK
 � 
��) thenwe deem ourmodel of other agents’ bidding
to be invalid and we revert to our most conservative bid: our own marginal value.

If the conditional bid distribution passes our test, based on these statistics we can
evaluate the expected utility �� of a candidate bid for a given unit, taking into con-
sideration the marginal value "� of the unit to Walverine, and the number of units
�� of this good for which we have bids greater than �. Expected utility of a bid also
reflects the expected price that will be paid for the unit, as well as the expected effect
the bid will have on the price paid for all our higher bids in this auction. Lacking an
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expression for expected prices conditional on bidding, we employ as an approximation
the median price statistics,"�� and"�	, defined above.7

�� 	�
 � !�		�
 �	"� � �
 � ��	��"�	
�

�!�
��	�
 �	"� �"��
 � ��	"�� �"�	
�

Walverine’s proposed offer for this unit is the bid value maximizing expected utility,

�� � ����
�

�� 	�

 (11)

6.3 Beat-the-Quote Adjustments

Upon calculating desired offer prices for all units of a given hotel, Walverine assembles
them into an overall bid vector for the auction, taking the beat-the-quote rule (BTQ)
into consideration. BTQ dictates that if the hypothetical quantity won for an agent’s
current bid is�, any replacement bid for that auction must represent an offer to buy at
least� units at a price at least ASK��. For example, suppose the current bid offers to
pay 	���� ���� ��
 for three units, respectively, of a given hotel room. If ASK � ���,
then the agent is winning its first two units (i.e., � � �). To satisfy BTQ, the agent’s
new bid must be at least 	���� ���
.

Let � � 	��� 
 
 
 � ��
 be the agent’s current bid for the eight potentially valuable
units in this auction (� � � � corresponds to no offer for that unit), and let � � be the
proposed new bid, derived according to the optimization procedure above (11). To
ensure satisfaction of BTQ, the agent could submit the modified bid

��� � 	��	����ASK� �
� 
 
 
 ���	��� �ASK� �
� ������ 
 
 
 � ��



However, this may not be a wise solution. Consider � � 	���� ���� ��� �� 
 
 

 as
in the example above, but with ASK � ��� (equal to the agent’s lowest winning bid),
and desired new bid �� � 	���� �� 
 
 

. In this situation, the agent would like to revise
upward its offer for the first unit, but would prefer that its offer of 150 for the second
unit were outbid by another agent. Considering that other agents also follow BTQ,
there will likely be several new bids at a price of ASK� � in the next round of bidding,
meaning that an unrevised bid of 150 stands a much better chance of being outbid
than does a revised bid of 151. In this case, the agent must balance the desirability
of revising its bid for the first unit against its aversion to increasing its offer for the
second.

Walverine decides whether to revise its bid based on a crude comparison of these
factors. It assesses the value of bidding in terms of the magnitude of its desired price
changes that are allowed by BTQ, and the cost of bidding in terms of the amount
by which BTQ requires bidding above actual value. If this latter value exceeds the
former, or a constant threshold, then Walverine refrains from submitting a revised bid.
Otherwise it submits ���.

7Offline analysis using Monte Carlo simulation verified that the approximation is reasonable.
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6.4 Analysis

Using game data from the TAC-02 finals, we tested the utility of our bidding algorithm
as well as the accuracy of the bid distributions.

Informal analysis reveals that our distributions systematically underestimate the
actual values of the bids. It appears that the distributions are fairly accurate during
the initial stages of the game, when our modeling assumptions hold (zero holdings,
all auctions open). The deterioration in accuracy of our distributions is not a fatal
problem, as our algorithm reverts to bidding marginal values when the observed price
quote is judged too unlikely with respect to our estimates. Of course, more accurate
distributions would enable more effective bid optimization.

Toward this end we devised an alternative bid estimation scheme, intended to cor-
rect for some of the invalid simplifying assumptions underlying our original method. 8

It turned out that, for the TAC-02 finals at least, the alternative distributions more
closely resemble the actual distribution of bids.

To test whether the more accurate estimates actually support improved bidding, we
devised a measure based on past data that determines the effectiveness of a set of bids
with respect to predicted prices and other agents’ actual bids. For each open hotel
in each bidding round, we calculated our winnings in that auction based on various
bidding strategies and the actual bids placed by other agents. We then scored each hy-
pothetical outcome under the assumption that rooms in other open hotels were available
at predicted prices.

We used this method to score bids over 256 closings (32 games times eight bidding
rounds) from the TAC-02 finals, generating 1152 data points (4.5 open hotels in average
bidding round). Surprisingly, bidding based on our original, nominally less accurate
distributions produced superior results, to both marginal-value bidding and bidding
based on the more accurate new distribution. However, a mean-difference test did not
reveal the differences to be statistically significant. Future work will further test and
refine our model of other agents’ bid distributions.

7 Entertainment Trading

Walverine’s approach to entertainment trading can be considered a polar opposite of the
competitive analysis approach it takes to flight and hotel buying. Equilibrium analysis
has little to say about the dynamics of prices produced through continuous auctions, yet
these transient behaviors seem particularly salient for effective entertainment trading.
Thus, for this domain, we employ no model of the market, and no explicit calcula-
tions of the expected outcomes of alternative bid choices. Instead, Walverine adopts a
model-free, empirical approach calledQ-learning—avariety of reinforcement learning
(Sutton and Barto, 1998).

8We forgo detailed specification, as this redesign effort is still in flux.
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7.1 Learning Framework

The idea of applying Q-learning to TAC strategies was proposed by Boadway and
Precup (2001), and employed in their TAC-01 entry. This agent attempted to learn a
policy for the entire TAC game, but this proved too ambitious given the time available
for development and training. Inspired by their example, we sought to pursue this
approach for the much more limited TAC task of entertainment trading.

The aim of Q-learning is to estimate a function $ � � � %  �, representing
the value of taking a given action in a given state. Value is typically measured by
(discounted) cumulative future rewards, and the function can be represented in tabu-
lar or implicit form. From the $ function one can derive an optimal policy, namely
that performing the maximally valued action in any given state. The recurrence (Bell-
man) equation relating values of adjacent states provides the basis for updating$ from
experience of taking actions and observing state transitions and rewards.

Walverine’s entertainment component considers each auction independently. We
approximate the state of an entertainment auction as the settings of six parameters:
BID, ASK, number of tickets held, marginal value of first unit ("��), marginal value of
zeroth unit ("��), and game time. To keep the state space manageable, we discretized
these dimensions into value sets of size 6, 6, 3, 7, 7, and 3, respectively. Marginal
values provided by the optimizer summarized client preferences and provided the nec-
essary link to our flight/hotel module.

The reward from entertainment has two components: cash flow from trading and
the entertainment bonus accrued to clients at the end of the game.

In each entertainment auction, Walverine maintains an offer to buy one unit, and
an offer to sell one unit (at a higher price, of course). Rather than take the offer prices
as actions, however, we define the action space in terms of offsets from marginal value.
That is, the action buy	
 means to revise its current unit buy offer to the price"� ��
. Similarly, sell	
 corresponds to a sell offer at"�� � . We defined eight discrete
offset values. However, rather than consider all 64 buy/sell combinations, Walverine
alternates between buy and sell decisions, considering only the eight available options
for each case.

7.2 Learning Results

Our learning procedure encodes $ as a table. Walverine maintained two tables: one
for entertainment events on days �1,4�, and the other for days �2,3�. Within each
category (six auctions apiece), the learning agent shared its trading experience. Given
the size of each table (6291 states and 16 actions9), Walverine required a great deal of
training experience. We ran the Q-learning algorithm over data gathered from 14,839
games, including matches against other TAC participants during preliminary rounds,
as well as many instances of self-play. Walverine employed a variety of entertainment
trading policies while gathering experience, including a hard-coded strategy based on
that reportedly employed by livingagents in TAC-01 (Fritschi and Dorer, 2002). Once

9There are 15,876 distinct combinations of state variables, but many of these do not represent legal states.
In all of its training, Walverine actually experienced 2588 and 2602 states, respectively, in the two auction
categories.
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we had accumulated sufficient data, we ran some instances of Walverine based on
preliminary learned policies, with various exploration-exploitation control methods.

Figure 2 displays a learning curve representing the evolution of Walverine’s enter-
tainment performance during the training period. We took as a baseline the value of
the null (no-trading) strategy, which we determined experimentally to provide an enter-
tainment reward (through retaining endowed tickets) of 1019 on average. As a second
baseline, we evaluated the performance of the aforementioned livingagents entertain-
ment strategy, embedded in Walverine. The performance axis of Figure 2 measures
Walverine’s learned entertainment strategy compared to this second baseline. In each
interval of training games represented, we evaluate the policy learned based on games
prior to that interval (thus the first interval represents the no-trading baseline). The
evaluation consists of self-play games with half the agents following the learned enter-
tainment policy and the other half following the livingagents entertainment strategy.
By the time of the TAC-02 finals, we had reached within 50 points of the hand-coded
strategy.
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Figure 2: Entertainment learning curve.

It is important to note that Walverine itself underwent many changes during the
learning process, which undoubtedly confounds the results. Moreover, the policies
evaluated in Figure 2 retain an exploration element, except the last interval, which is
pure exploitation.

In the TAC-02 finals, Walverine averaged an entertainment reward of 1409, nearly
400 over the non-biddingbaseline. A summary of entertainment performance by agent
is included in Table 2. Interestingly, whitebear, the high scorer in TAC-02, was ex-
tremely successful on entertainment, achieving an average reward of 1623. Although
Vetsikas and Selman (2003) report employing a simple entertainment strategy, the high
payoff achieved suggests that there may be room for improvement through further
learning in this environment.
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Agent Final score CP Adj Ent

whitebear 3413 +66 1623
SouthamptonTAC 3385 -48 1464
Thalis 3246 -36 1393
UMBCTAC 3236 +55 1327
Walverine 3210 +67 1409
livingagents10 3181 -20 1362
kavayaH 3099 -60 1460
cuhk 3069 -24 1452

Table 2: Scores during the finals. Each agent played 32 games. The second column
represents our calculated adjustment due to client preference assignments. The third
column presents the entertainment component of agent scores.

8 TAC-02 Agent Performance

8.1 Tournament Results

Average scores for the eight agents that played in the final round are posted in Table 2.
See http://www.sics.se/tac for a list of participant affiliations and team lead-
ers, as well as results from preliminary and semifinal rounds. Complete game logs are
available, as for the previous TAC events.

Performance in the tournament is one relevant measure of agent quality, although
we agree with those who have cautioned against focusing excessively on ranked results
in the context of research competitions (Stone, 2002). One interesting question is how
to measure progress over time. The two top-scoring agents in TAC-01, livingagents
and ATTac-2001, participated with essentially unchanged agents in TAC-02. As noted
above, livingagents did quite well, assuming we ignore the bug that caused it to skip
two games. ATTac was top scorer in the TAC-02 seeding rounds, but then was elimi-
nated in the semifinals. One possible explanation is that prices during the preliminary
rounds in 2002 (whichATTac uses as training data) were not sufficiently representative
of the final rounds. However, we believe it is also reflective of a general increase in
competence of the other agents in the field.

The two top-scoring agents in TAC-02,whitebear andSouthamptonTAC (He and
Jennings, 2002), also contended in TAC-01. These agents reportedly evolved from their
2001 designs, improved through adopting refined classifications of game environments
(He and Jennings, 2003), and through extensive experimentation and parameter tuning
(Vetsikas and Selman, 2003).

10The score of livingagents was adversely affected bymissing two games. Discounting these would have
led to an average score of 3393.
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Round Global TAC Market TAC (%) Uniform H+E (%) Endowed E (%)

Qualify 618 415 67.0 95.2 85.4
Seeding 618 470 75.7 95.2 85.4
Semi-Final 608 534 87.7 95.2 85.5
Final 609 542 89.1 94.6 85.0

Table 3: The efficiency of the TAC market compared to the global optimum. Global
optimization with uniform allocation of hotel and entertainment to agents is reported
as a benchmark, as is a second benchmark with uniform hotel allocation and no enter-
tainment trading.

8.2 TAC Market Efficiency

Another gauge of agent effectiveness is how well they allocate travel goods, in the ag-
gregate, through their market interactions. We can measure this by comparing actual
TAC market allocations with ideal global allocations. Consider the total group of 64
clients, and the set of available resources: 16 hotel rooms of each type per day, plus 8
entertainment tickets of each type per day. The global optimizer calculates the alloca-
tion of resources maximizing total client utility, net of expenditures on flights assuming
they are available at their initial prices. Note that this optimization neglects hotel and
entertainment prices, as these are endogenous to the TAC market. The average achiev-
able net utility, per client, in the various rounds of the TAC tournament as determined
by global optimization is reported under the heading “Global” in Table 3. Average net
utility achieved in the actual TAC games (also neglecting hotel and entertainment ex-
penditures, but counting actual payments for flights) is reported under “TAC Market”.

As seen in the table, we found that the TAC market achieved 89% of the optimal
value, on average, over the 32 games of the TAC-02 finals. There was a steady improve-
ment from the qualifying round (67% optimal), seeding round (76%), and semifinals
(88%). It is difficult to assess this effectiveness in absolute terms, so we provide a cou-
ple of benchmarks for comparison. In “Uniform H+E”, we distribute the hotel rooms
and entertainment evenly across the eight agents, then optimize each agent’s allocation
to clients. This approach yields 95% of the globally optimal value. The relative value
drops to around 85% if we distribute only the hotels, leaving agents with their original
endowment of entertainment. It is perhaps surprising that simply dividing the goods
uniformly achieves such a high fraction of the available surplus—better than the market
if entertainment is included in the distribution.

One reason that the uniform distribution is relatively so effective is that the agents
are ex ante symmetric, with i.i.d. clients. Potential gains from trade are thus not so
great for hotels. Second, a direct allocation avoids the significant obstacles posed to
agents pursuing their allotments individually through the market. Agents face substan-
tial risk (price uncertainty, exposure due to complementarities, unknown hotel closing
patterns), and this necessarily entails some loss in expected allocation quality. For
example, the set of available hotels is sufficient to obtain trips for all clients (albeit
shortened from desired lengths), and given a definite allocation the agent can optimize
for its clients accordingly. With uncertainty, the agents may plan for longer trips than
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are jointly feasible, and thus wind up wasting flights, hoarding hotel rooms (to hedge),
or resorting to suboptimal fallback trip options. In future work, we will investigate in
greater depth the various sources of misallocation in TAC play.

9 Conclusions

The hallmark of Walverine’s approach is its basis in competitive analysis of the TAC
travel economy. Walverine displays this characteristic most directly in its use of Wal-
rasian competitive equilibrium to predict hotel prices, and its method for optimal bid-
ding, which relies on the competitive property in its model of other agent’s bids. The
agent’s hotel and flight bidding strategy is decision-analytic to the core, as every action
is based on an explicit optimization with respect to its model assumptions.

As designers, we avoided empirical parameter tuning, except in the case of enter-
tainment bidding, where we ceded all discretion to an automatic learning procedure.
(Admittedly, we exercised subjective judment in formulating the learning problem, in-
evitably introducing some bias.) Our aim is to enable sharper evaluation of our funda-
mental hypothesis regarding the utility of competitive analysis.

Although the results cannot be definitive, we regard Walverine’s TAC-02 experi-
ence as broad validation of its underlying approach. More focused studies, for example
on initial price prediction (Wellman et al., 2002), are need to evaluate specific compo-
nents of the agent’s strategy. There is clearly room for improvement; in particular
we have identified interim price prediction and modeling for optimal bidding as areas
where Walverine fails to exploit available information. We intend to pursue such topics
in preparing for future competitions in the TAC series.

Planning for TAC-03 is well underway. The 2003 tournament will include a di-
vision devoted to the travel-shopping game described here (now dubbed “TAC Clas-
sic”), and will also introduce a new game involving trading multi-faceted goods in a
supply-chain context. This new game will introduce several interesting strategic issues
not emphasized in TAC Classic. We hope that many of the agent researchers inter-
ested in trading domains will participate in one or both of these games, and find it—as
we have—a stimulating and fertile environment for developing and evaluating novel
trading-agent techniques.
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