34 research outputs found
Population Genomics and Phylogeography of an Australian Dairy Factory Derived Lytic Bacteriophage
In this study, we present the full genomic sequences and evolutionary analyses of a serially sampled population of 28 Lactococcus lactis–infecting phage belonging to the 936-like group in Australia. Genome sizes were consistent with previously available genomes ranging in length from 30.9 to 32.1 Kbp and consisted of 55–65 open reading frames. We analyzed their genetic diversity and found that regions of high diversity are correlated with high recombination rate regions (P value = 0.01). Phylogenetic inference showed two major clades that correlate well with known host range. Using the extended Bayesian Skyline model, we found that population size has remained mostly constant through time. Moreover, the dispersion pattern of these genomes is in agreement with human-driven dispersion as suggested by phylogeographic analysis. In addition, selection analysis found evidence of positive selection on codon positions of the Receptor Binding Protein (RBP). Likewise, positively selected sites in the RBP were located within the neck and head region in the crystal structure, both known determinants of host range. Our study demonstrates the utility of phylogenetic methods applied to whole genome data collected from populations of phage for providing insights into applied microbiology
Phylogeographic analysis reveals multiple international transmission events have driven the global emergence of Escherichia coli O157:H7
This work was supported by: Scotland by Food Standards Scotland [Grant Number FS102029] and University of Aberdeen; New Zealand, Institute of Environmental Science and Research; Canada, the Public Health Agency of Canada; United States, United States Department of AgriculturePeer reviewedPostprin
From DNA sequence to application: possibilities and complications
The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems.
The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons.
Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
Salmonella enterica subsp. salamae serovar Sofia, a prevalent serovar in Australian broiler chickens, is also capable of transient colonisation in layers
1. Salmonella enterica subsp. salamae serovar sofia (S. sofia) is a prevalent strain of Salmonella in Australian broilers and has been isolated from broiler chickens, litter, dust, as well as pre- and post-processing carcasses, and retail chicken portions but has never been reported in commercial Australian layers or eggs. 2. To investigate whether a S. sofia isolate from a broiler could colonise layers, one-month-old Hyline brown layers were orally inoculated with S. sofia and colonisation was monitored for 2-4 weeks. 3. Overall, 30-40% of the chickens shed S. sofia from the cloaca between 6 and 14 d post-inoculation which then declined to 10% by d 21. Necropsy at 2 weeks post-inoculation revealed 80% of birds harboured S. sofia in the caecum, whilst, by 4 weeks post-infection, no chickens were colonised with S. sofia in the gastrointestinal tract, liver or spleen. Additionally, no aerosol 'bird to bird' transfer was evident. 4. This study demonstrated that laying hens can be colonised by broiler-derived S. sofia; however, this colonisation was transient, reaching a peak at 14 d post-inoculation, and was completely cleared by 28 d post-inoculation. The transience of colonisation of S. sofia in layers could be a factor explaining why S. sofia has never been detected when screening for Salmonella serotypes found in Australian laying hens or eggs