612 research outputs found
Dynamic photoconductive gain effect in shallow-etched AlGaAs/GaAs quantum wires
We report on a dynamic photoconductive gain effect in quantum wires which are
lithographically fabricated in an AlGaAs/GaAs quantum well via a shallow-etch
technique. The effect allows resolving the one-dimensional subbands of the
quantum wires as maxima in the photoresponse across the quantum wires. We
interpret the results by optically induced holes in the valence band of the
quantum well which shift the chemical potential of the quantum wire. The
non-linear current-voltage characteristics of the quantum wires also allow
detecting the photoresponse effect of excess charge carriers in the conduction
band of the quantum well. The dynamics of the photoconductive gain are limited
by the recombination time of both electrons and holes
Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems
Starting with a group of reinforcement-learning agents we derive coupled
replicator equations that describe the dynamics of collective learning in
multiagent systems. We show that, although agents model their environment in a
self-interested way without sharing knowledge, a game dynamics emerges
naturally through environment-mediated interactions. An application to
rock-scissors-paper game interactions shows that the collective learning
dynamics exhibits a diversity of competitive and cooperative behaviors. These
include quasiperiodicity, stable limit cycles, intermittency, and deterministic
chaos--behaviors that should be expected in heterogeneous multiagent systems
described by the general replicator equations we derive.Comment: 4 pages, 3 figures,
http://www.santafe.edu/projects/CompMech/papers/credlmas.html; updated
references, corrected typos, changed conten
Optically induced transport properties of freely suspended semiconductor submicron channels
We report on optically induced transport phenomena in freely suspended
channels containing a two-dimensional electron gas (2DEG). The submicron
devices are fabricated in AlGaAs/GaAs heterostructures by etching techniques.
The photoresponse of the devices can be understood in terms of the combination
of photogating and a photodoping effect. The hereby enhanced electronic
conductance exhibits a time constant in the range of one to ten milliseconds
First principles study of strain/electronic interplay in ZnO; Stress and temperature dependence of the piezoelectric constants
We present a first-principles study of the relationship between stress,
temperature and electronic properties in piezoelectric ZnO. Our method is a
plane wave pseudopotential implementation of density functional theory and
density functional linear response within the local density approximation. We
observe marked changes in the piezoelectric and dielectric constants when the
material is distorted. This stress dependence is the result of strong, bond
length dependent, hybridization between the O and Zn electrons. Our
results indicate that fine tuning of the piezoelectric properties for specific
device applications can be achieved by control of the ZnO lattice constant, for
example by epitaxial growth on an appropriate substrate.Comment: accepted for publication in Phys. Rev.
Diffusion and viscosity in a supercooled polydisperse system
We have carried out extensive molecular dynamics simulations of a supercooled
polydisperse Lennard-Jones liquid with large variations in temperature at a
fixed pressure. The particles in the system are considered to be polydisperse
both in size and mass. The temperature dependence of the dynamical properties
such as the viscosity () and the self-diffusion coefficients () of
different size particles is studied. Both viscosity and diffusion coefficients
show super-Arrhenius temperature dependence and fit well to the well-known
Vogel-Fulcher-Tammann (VFT) equation. Within the temperature range
investigated, the value of the Angell's fragility parameter (D )
classifies the present system into a strongly fragile liquid. The critical
temperature for diffusion () increases with the size of the
particles. The critical temperature for viscosity () is larger than
that for the diffusion and a sizeable deviations appear for the smaller size
particles implying a decoupling of translational diffusion from viscosity in
deeply supercooled liquid. Indeed, the diffusion shows markedly non-Stokesian
behavior at low temperatures where a highly nonlinear dependence on size is
observed. An inspection of the trajectories of the particles shows that at low
temperatures the motions of both the smallest and largest size particles are
discontinuous (jump-type). However, the crossover from continuous Brownian to
large length hopping motion takes place at shorter time scales for the smaller
size particles.Comment: Revtex4, 7 pages, 8 figure
Participation in medical decision-making across Europe: an international longitudinal multicenter study
Background: The purpose of this paper was to examine national differences in the desire to participate in decision-making of people with severe mental illness in six European countries.
Methods: The data was taken from a European longitudinal observational study (CEDAR; ISRCTN75841675). A sample of 514 patients with severe mental illness from the study centers in Ulm, Germany, London, England, Naples, Italy, Debrecen, Hungary, Aalborg, Denmark and Zurich, Switzerland were assessed as to desire to participate in medical decision-making. Associations between desire for participation in decision-making and center location were analyzed with generalized estimating equations.
Results: We found large cross-national differences in patients’ desire to participate in decision-making, with the center explaining 40% of total variance in the desire for participation (p<0.001). Averaged over time and independent of patient characteristics, London (mean=2.27), Ulm (mean=2.13) and Zurich (mean=2.14) showed significantly higher scores in desire for participation, followed by Aalborg (mean=1.97), where scores were in turn significantly higher than in Debrecen (mean=1.56). The lowest scores were reported in Naples (mean=1.14). Over time, desire for participation in decision-making increased significantly in Zurich (b=0.23) and decreased in Naples (b=-0.14). In all other centers, values remained stable.
Conclusions: This study demonstrates that patients’ desire for participation in decisionmaking varies by location. We suggest that more research attention be focused on identifying specific cultural and social factors in each country to further explain observed differences across Europe
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
We describe the method devised to reconstruct inclined cosmic-ray air showers
with zenith angles greater than detected with the surface array of
the Pierre Auger Observatory. The measured signals at the ground level are
fitted to muon density distributions predicted with atmospheric cascade models
to obtain the relative shower size as an overall normalization parameter. The
method is evaluated using simulated showers to test its performance. The energy
of the cosmic rays is calibrated using a sub-sample of events reconstructed
with both the fluorescence and surface array techniques. The reconstruction
method described here provides the basis of complementary analyses including an
independent measurement of the energy spectrum of ultra-high energy cosmic rays
using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of
Cosmology and Astroparticle Physics (JCAP
- …