190 research outputs found

    Gla-rich protein (GRP) as an early and novel marker of vascular calcification and kidney dysfunction in diabetic patients with CKD: a pilot cross-sectional study

    Get PDF
    Vascular calcification (VC) is one of the strongest predictors of cardiovascular risk in chronic kidney disease (CKD) patients. New diagnostic/prognostic tools are required for early detection of VC allowing interventional strategies. Gla-rich protein (GRP) is a cardiovascular calcification inhibitor, whose clinical utility is here highlighted. The present study explores, for the first time, correlations between levels of GRP in serum with CKD developmental stage, mineral metabolism markers, VC and pulse pressure (PP), in a cohort of 80 diabetic patients with mild to moderate CKD (stages 2-4). Spearman's correlation analysis revealed a positive association of GRP serum levels with estimated glomerular filtration rate (eGFR) and α-Klotho, while a negative correlation with phosphate (P), fibroblast growth factor 23 (FGF-23), vascular calcification score (VCS), PP, calcium (x) phosphate (CaxP) and interleukin 6 (IL-6). Serum GRP levels were found to progressively decrease from stage 2 to stage 4 CKD. Multivariate analysis identified low levels of eGFR and GRP, and high levels of FGF-23 associated with both the VCS and PP. These results indicate an association between GRP, renal dysfunction and CKD-mineral and bone disorder. The relationship between low levels of GRP and vascular calcifications suggests a future, potential utility for GRP as an early marker of vascular damage in CKD.Portuguese Society of Nephrology (SPN) ; Portuguese national funds from FCT-Foundation for Science and Technology through the transitional provision DL57/2016/CP1361/CT0006 UIDB/04326/2020info:eu-repo/semantics/publishedVersio

    Analysis of radiation effects on silicon strip detectors in the NA50 experiment

    Get PDF
    Abstract During the operation of the Multiplicity Detector in the NA50 experiment the single sided AC-coupled p-on-n silicon strip detectors were exposed to charged particle fluences resulting in an equivalent 1 MeV neutron fluence up to 10 14 eq. n/cm 2 and a total ionising dose up to 20 Mrad, with a very non-uniform radiation spatial distribution. In this paper detailed analysis of radiation effects observed on the detectors during the 1996 lead ion run as well as results of measurements performed after the run are presented

    The silicon multiplicity detector for the NA50 experiment at CERN

    Get PDF
    The design, operation and performance of the silicon strip Multiplicity Detector for the heavy-ion experiment NA50 at CERN are presented. The main features of the detector are high speed (50 MHz sampling frequency), high granularity (more than 13,000 strips), and good radiation resistance. The detector provided a measurement ofevent centrality in Pb–Pb collisions, as well as target identification and the measurement ofcharged particle pseudorapidity distributions as a function of centrality. r 2002 Elsevier Science B.V. All rights reserved. PACS: 29.4

    On the Origin of the Satellite Peaks in Alpha Particle Spectra

    Get PDF
    In this work we describe the results obtained with S3590-06 and ion-implanted diodes for alpha particle spectrometry. Satellite peaks were also investigated in order to identify not only the origin of these phenomena, but also the importance of the guard ring region on their relative intensities. The preliminary results indicate that the true cause of the spurious satellite peaks might be associated with the weak electric fields around the guard rings region and changes on the entrance window absorption near the edge of the diodes. Further steps are needed to clear up this problem

    A High Dynamic Range ASIC for Time of Flight PET with monolithic crystals

    Get PDF
    The HRFlexToT is a 16-channel ASIC for SiPM anode readout designed for Positron Emission Tomography (PET) applications that features high dynamic range (>8 bits), low input impedance, common cathode connection, high speed and low power (~3.5 mW/ch). The ASIC has been manufactured using XFAB 0.18 mm CMOS technology. The main characteristics of the HRFlexToT, compared to its predecessor, are a new energy measurement readout providing a linear Time Over Threshold (ToT) with an extended dynamic range, lower power consumption and better timing response. Initial measurements show a linearity error below 3%. Single Photon Time Resolution (SPTR) measurements performed using a Hamamatsu MPPC S13360-3050CS (3x3 mm2 pixel, 50 umm cell) shows 30% improvement with respect to the previous version of the ASIC, setting this specification in the order of 141 ps FWHM and reducing 3 times power consumption. It is important to highlight that an SPTR of 141 ps FWHM is, according to the best of our knowledge, the best resolution achieved so far for this sensor. Coincidence Time Resolution (CTR) measurements are expected to be performed during 2018

    Design and operation of a fast high-granularity silicon detector system in a high-radiation environment

    Get PDF
    Abstract We have designed, realized and operated a fast silicon detector system (50 MHz sampling frequency) to measure the angular distribution and the multiplicity of charged secondaries produced in high-energy Pb–Pb interactions, within the NA50 experiment. We present here the detector design, discuss some of the problems faced during the commissioning and report on the first results on the operation of the full system. In particular, the questions related to the operation of an integrated high-speed binary readout in a high-radiation environment (1014 particles/cm2 and about 10 Mrads) and to the radiation effects on the system during the run will be addressed

    Validation of a small-animal PET simulation using GAMOS: a Geant4-based framework

    Full text link
    onte Carlo-based modelling is a powerful tool to help in the design and optimization of positron emission tomography (PET) systems. The performance of these systems depends on several parameters, such as detector physical characteristics, shielding or electronics, whose effects can be studied on the basis of realistic simulated data. The aim of this paper is to validate a comprehensive study of the Raytest ClearPET small-animal PET scanner using a new Monte Carlo simulation platform which has been developed at CIEMAT (Madrid, Spain), called GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations). This toolkit, based on the GEANT4 code, was originally designed to cover multiple applications in the field of medical physics from radiotherapy to nuclear medicine, but has since been applied by some of its users in other fields of physics, such as neutron shielding, space physics, high energy physics, etc. Our simulation model includes the relevant characteristics of the ClearPET system, namely, the double layer of scintillator crystals in phoswich configuration, the rotating gantry, the presence of intrinsic radioactivity in the crystals or the storage of single events for an off-line coincidence sorting. Simulated results are contrasted with experimental acquisitions including studies of spatial resolution, sensitivity, scatter fraction and count rates in accordance with the National Electrical Manufacturers Association (NEMA) NU 4-2008 protocol. Spatial resolution results showed a discrepancy between simulated and measured values equal to 8.4% (with a maximum FWHM difference over all measurement directions of 0.5 mm). Sensitivity results differ less than 1% for a 250–750 keV energy window. Simulated and measured count rates agree well within a wide range of activities, including under electronic saturation of the system (the measured peak of total coincidences, for the mouse-sized phantom, was 250.8 kcps reached at 0.95 MBq mL−1 and the simulated peak was 247.1 kcps at 0.87 MBq mL−1). Agreement better than 3% was obtained in the scatter fraction comparison study. We also measured and simulated a mini-Derenzo phantom obtaining images with similar quality using iterative reconstruction methods. We concluded that the overall performance of the simulation showed good agreement with the measured results and validates the GAMOS package for PET applications. Furthermore, its ease of use and flexibility recommends it as an excellent tool to optimize design features or image reconstruction techniques

    The dependence of the anomalous J/psi suppression on the number of participant nucleons

    Get PDF
    The observation of an anomalous J/psi suppression in Pb-Pb collisions by the NA50 Collaboration can be considered as the most striking indication for the deconfinement of quarks and gluons at SPS energies. In this Letter, we determine the J/psi suppression pattern as a function of the forward hadronic energy E-ZDC measured in a Zero Degree Calorimeter (ZDC). The direct connection between EZDC and the geometry of the collision allows us to calculate, within a Glauber approach, the precise relation between the number of participant nucleons N-part and E-ZDC. Then, we check if the experimental data can be better explained by a sudden or a smooth onset of the anomalous J/psi suppression as a function of the number of participants. (C) 2001 Elsevier Science B.V. All rights reserved.info:eu-repo/semantics/publishedVersio
    corecore