7,332 research outputs found

    Rain estimation from satellites: An examination of the Griffith-Woodley technique

    Get PDF
    The Griffith-Woodley Technique (GWT) is an approach to estimating precipitation using infrared observations of clouds from geosynchronous satellites. It is examined in three ways: an analysis of the terms in the GWT equations; a case study of infrared imagery portraying convective development over Florida; and the comparison of a simplified equation set and resultant rain map to results using the GWT. The objective is to determine the dominant factors in the calculation of GWT rain estimates. Analysis of a single day's convection over Florida produced a number of significant insights into various terms in the GWT rainfall equations. Due to the definition of clouds by a threshold isotherm the majority of clouds on this day did not go through an idealized life cycle before losing their identity through merger, splitting, etc. As a result, 85% of the clouds had a defined life of 0.5 or 1 h. For these clouds the terms in the GWT which are dependent on cloud life history become essentially constant. The empirically derived ratio of radar echo area to cloud area is given a singular value (0.02) for 43% of the sample, while the rainrate term is 20.7 mmh-1 for 61% of the sample. For 55% of the sampled clouds the temperature weighting term is identically 1.0. Cloud area itself is highly correlated (r=0.88) with GWT computed rain volume. An important, discriminating parameter in the GWT is the temperature defining the coldest 10% cloud area. The analysis further shows that the two dominant parameters in rainfall estimation are the existence of cold cloud and the duration of cloud over a point

    The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth

    Get PDF
    I review the excursion set theory (EST) of dark matter halo formation and clustering. I recount the Press-Schechter argument for the mass function of bound objects and review the derivation of the Press-Schechter mass function in EST. The EST formalism is powerful and can be applied to numerous problems. I review the EST of halo bias and the properties of void regions. I spend considerable time reviewing halo growth in the EST. This section culminates with descriptions of two Monte Carlo methods for generating halo mass accretion histories. In the final section, I emphasize that the standard EST approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and a more versatile formalism. One such assumption is the constant height of the barrier for nonlinear collapse. I review implementations of the excursion set approach with arbitrary barrier shapes. An application of this is the now well-known improvement to standard EST that follows from the ellipsoidal-collapse barrier. Additionally, I emphasize that the statement that halo accretion histories are independent of halo environments is a simplifying assumption, rather than a prediction of the theory. I review the method for constructing correlated random walks of the density field in more general cases. I construct a simple toy model with correlated walks and I show that excursion set theory makes a qualitatively simple and general prediction for the relation between halo accretion histories and halo environments: regions of high density preferentially contain late-forming halos and conversely for regions of low density. I conclude with a brief discussion of this prediction in the context of recent numerical studies of the environmental dependence of halo properties. (Abridged)Comment: 62 pages, 19 figures. Review article based on lectures given at the Sixth Summer School of the Helmholtz Institute for Supercomputational Physics. Accepted for Publication in IJMPD. Comments Welcom

    Molecular basis for passive immunotherapy of Alzheimer's disease

    Get PDF
    Amyloid aggregates of the amyloid-{beta} (A{beta}) peptide are implicated in the pathology of Alzheimer's disease. Anti-A{beta} monoclonal antibodies (mAbs) have been shown to reduce amyloid plaques in vitro and in animal studies. Consequently, passive immunization is being considered for treating Alzheimer's, and anti-A{beta} mAbs are now in phase II trials. We report the isolation of two mAbs (PFA1 and PFA2) that recognize A{beta} monomers, protofibrils, and fibrils and the structures of their antigen binding fragments (Fabs) in complex with the A{beta}(1–8) peptide DAEFRHDS. The immunodominant EFRHD sequence forms salt bridges, hydrogen bonds, and hydrophobic contacts, including interactions with a striking WWDDD motif of the antigen binding fragments. We also show that a similar sequence (AKFRHD) derived from the human protein GRIP1 is able to cross-react with both PFA1 and PFA2 and, when cocrystallized with PFA1, binds in an identical conformation to A{beta}(1–8). Because such cross-reactivity has implications for potential side effects of immunotherapy, our structures provide a template for designing derivative mAbs that target A{beta} with improved specificity and higher affinity

    U(3) chiral perturbation theory with infrared regularization

    Get PDF
    We include the eta-prime in chiral perturbation theory without employing 1/N_c counting rules. The method is illustrated by calculating the masses and decay constants of the Goldstone boson octet (pions, kaons, eta) and the singlet eta-prime up to one-loop order. The effective Lagrangian describing the interactions of the eta-prime with the Goldstone boson octet is presented up to fourth chiral order and the loop integrals are evaluated using infrared regularization, which preserves Lorentz and chiral symmetry.Comment: 29 page

    SMASH 1 : A VERY FAINT GLOBULAR CLUSTER DISRUPTING in the OUTER REACHES of the LMC?

    Get PDF
    We present the discovery of a very faint stellar system, SMASH 1, that is potentially a satellite of the Large Magellanic Cloud. Found within the Survey of the Magellanic Stellar History (SMASH), SMASH 1 is a compact (rh=9.1-3.4+5.9pc) and very low luminosity (Mv=-1.0±0.9,Lv=102.3±0.4L⊙ ) stellar system that is revealed by its sparsely populated main sequence and a handful of red giant branch candidate member stars. The photometric properties of these stars are compatible with a metal-poor ([Fe/H]=-2.2) and old (13 Gyr) isochrone located at a distance modulus of ∌18.8, i.e., a distance of . Situated at 11.°3 from the LMC in projection, its three-dimensional distance from the Cloud is 13 kpc, consistent with a connection to the LMC, whose tidal radius is at least . Although the nature of SMASH 1 remains uncertain, its compactness favors it being a stellar cluster and hence dark-matter free. If this is the case, its dynamical tidal radius is only â‰Č19 pc at this distance from the LMC, and smaller than the system's extent on the sky. Its low luminosity and apparent high ellipticity (Ï”=0.62-0.21+0.17) with its major axis pointing toward the LMC may well be the tell-tale sign of its imminent tidal demise.Peer reviewe

    The Mass Spectrum of Light and Heavy Hadrons from Improved Lattice Actions

    Get PDF
    We use improved lattice actions for glue, light quarks and heavy quarks for which we use lattice NRQCD to compute hadron masses. Our results are in good agreement with experiment, except for charmed hadrons. It seems that charmed quar ks are not well approximated as heavy quarks nor as light quarks.Comment: 14 pages +6 pages figures, plain-tex fil

    Integrated Generation of High-dimensional Entangled Photon States and Their Coherent Control

    Get PDF
    We demonstrate the generation of high-dimensional entangled photon pairs with a Hilbert-space dimensionality larger than 100 from an on-chip nonlinear microcavity, and introduce a coherent control scheme using standard telecommunications components

    Non‐native species have multiple abundance–impact curves

    Full text link
    The abundance–impact curve is helpful for understanding and managing the impacts of non‐native species. Abundance–impact curves can have a wide range of shapes (e.g., linear, threshold, sigmoid), each with its own implications for scientific understanding and management. Sometimes, the abundance–impact curve has been viewed as a property of the species, with a single curve for a species. I argue that the abundance–impact curve is determined jointly by a non‐native species and the ecosystem it invades, so that a species may have multiple abundance–impact curves. Models of the impacts of the invasive mussel Dreissena show how a single species can have multiple, noninterchangeable abundance–impact curves. To the extent that ecosystem characteristics determine the abundance–impact curve, abundance–impact curves based on horizontal designs (space‐for‐time substitution) may be misleading and should be used with great caution, it at all. It is important for scientists and managers to correctly specify the abundance–impact curve when considering the impacts of non‐native species. Diverting attention from the invading species to the invaded ecosystem, and especially to the interaction between species and ecosystem, could improve our understanding of how non‐native species affect ecosystems and reduce uncertainty around the effects of management of populations of non‐native species.The abundance–impact curve is a useful tool for understanding and managing the impacts of invasive species. Using models based on the impacts of the zebra mussel, I show that a single invasive species can have radically different abundance–impact curves in different habitats. This means that managers must be careful to use the correct abundance–impact curve and that scientists should avoid using space‐for‐time substitution to understand the impacts of invaders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156222/2/ece36364.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156222/1/ece36364_am.pd

    Survival and Spatial Ecology of the Snapping Turtle, Chelydra serpentina, on the Upper Mississippi River

    Get PDF
    We studied the survival and spatial ecology of adult Snapping Turtles (Chelydra serpentina) on Pool 8 of the Upper Mississippi River (UMR) during 1997-2001. We captured 597 Snapping Turtles 745 times (333 adult males; 238 adult females; and 26 juveniles) at two study sites; Goose Island, Wisconsin and Lawrence Lake, Minnesota. From this sample, we radio-marked 104 Snapping Turtles of legal harvest size 128 times. Annual survival ranged from 0.857 to 1.000 and averaged 0.944 with Goose Island and Lawrence Lake estimates pooled. Legal harvest was the most important cause of mortality and accounted for 57% of documented deaths. Annual home range size using the Poly-Buff (PB) method averaged 11.13 ha and ranged from 2.20 ha to 37.18 ha. Emergent and rooted-floating aquatic vegetation were used disproportionally more than their availability and 72% of all locations collected during the active period occurred within these habitat types. Overall, radio-marked Snapping Turtles selected hibernacula in the following habitat categories; marshes (38%), main/side channels (28%), backwater sloughs and small ponds (14%), spring areas (10%), small tributary streams (7%), and tertiary channels (3%). Developing conservative, consistent harvest regulations among the states that border the UMR should be a management priority
    • 

    corecore