37 research outputs found

    Climate and growth of Podocarpus salignus in Valdivia, Chile

    Get PDF
    Abstract: Little dendroclimatic research has been conducted on species of Podocarpus, in response to inherent difficulties associated with tree-ring differentiation and cross-dating. We sampled complete stem cross sections from a plantation of Podocarpus salignus trees in Valdivia, Chile, near the southern edge of the species' range. We measured earlywood, latewood, and total ring widths avoiding ring wedging, and we calculated the corresponding chronologies. The relationship of these chronologies with maximum temperature, precipitation, and sea level pressure was addressed using correlation and redundancy analyses. All chronologies showed a similar response to climate that was consistent with the cloudy, rainy, and temperate conditions of the study area. That is, warm and dry conditions during previous late springs were beneficial, while warm and rainy winters under low atmospheric pressures were detrimental for growth. The observed climatic responses are in contrast to those of conifers from mountainous areas of southern South America. Limitation of carbohydrates available for growth in the following active season was a possible cause for the observed responses to climate. That is, high winter temperatures may deplete stored carbohydrates by increasing respiration, and a high degree of cloud cover reduces the radiation received by the trees in the active season, which may hamper photosynthesis. Our work highlights the dendroclimatological value of Podocarpus salignus to investigate the influence of climatic variation on tree growth and forest productivity

    CT Perfusion for Detection of Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND AND PURPOSE: Delayed cerebral ischemia is a significant cause of morbidity and mortality after aneurysmal SAH, leading to poor outcomes. The purpose of this study was to evaluate the usefulness of CTP in determining delayed cerebral ischemia in patients with aneurysmal SAH. MATERIALS AND METHODS: We conducted a systematic review evaluating studies that assessed CTP in patients with aneurysmal SAH for determining delayed cerebral ischemia. Studies using any of the following definitions of delayed cerebral ischemia were included in the systematic review: 1) new onset of clinical deterioration, 2) cerebral infarction identified on follow-up CT or MR imaging, and 3) functional disability. A random-effects meta-analysis was performed assessing the strength of association between a positive CTP result and delayed cerebral ischemia. RESULTS: The systematic review identified 218 studies that met our screening criteria, of which 6 cohort studies met the inclusion criteria. These studies encompassed a total of 345 patients, with 155 (45%) of 345 patients classified as having delayed cerebral ischemia and 190 (55%) of 345 patients as not having delayed cerebral ischemia. Admission disease severity was comparable across all groups. Four cohort studies reported CTP test characteristics amenable to the meta-analysis. The weighted averages and ranges of the pooled sensitivity and specificity of CTP in the determination of delayed cerebral ischemia were 0.84 (0.7-0.95) and 0.77 (0.66-0.82), respectively. The pooled odds ratio of 23.14 (95% CI, 5.87-91.19) indicates that patients with aneurysmal SAH with positive CTP test results were approximately 23 times more likely to experience delayed cerebral ischemia compared with patients with negative CTP test results. CONCLUSIONS: Perfusion deficits on CTP are a significant finding in determining delayed cerebral ischemia in aneurysmal SAH. This may be helpful in identifying patients with delayed cerebral ischemia before development of infarction and neurologic deficits

    Wood anatomical traits in black spruce reveal latent water constraints on the boreal forest

    No full text
    The effects of climate change on high-latitude forest ecosystems are complex, making forecasts of future scenarios uncertain. The predicted lengthening of the growing season under warming conditions is expected to increase tree growth rates. However, there is evidence of an increasing sensitivity of the boreal forest to drought stress. To assess the influence of temperature and precipitation on the growth of black spruce (Picea mariana), we investigated long-term series of wood anatomical traits on 20 trees from four sites along 600 km, the latitudinal range of the closed boreal forest in Quebec, Canada. We correlated the anatomical traits resolved at intraring level with daily temperature, vapor pressure deficit (VPD), and precipitation during the 1943\u20132010 period. Tree-ring width, number of cells per ring and cell wall thickness were positively affected by spring and summer daily mean and maximum temperature at the northern sites. These results agree with the well-known positive effect of high temperatures on tree ring formation at high latitudes. However, we captured, for the first time in this region, the latent impact of water availability on xylem traits. Indeed, in all the four sites, cell lumen area showed positive correlations with daily precipitation (mostly at low latitude), and/or negative correlations with daily mean and maximum temperature and VPD (mostly at high latitude). We inferred that drought, due to high temperatures, low precipitations, or both, negatively af- fects cell enlargement across the closed boreal forest, including the northernmost sites. The production of tracheids with narrower lumen, potentially more resistant to cavitation, could increase xylem hydraulic safety under a warmer and drier cli- mate. However, this would result in lower xylem conductivity, with consequent long- term hydraulic deterioration, growth decline, and possibly lead to tree dieback, as observed in other forest ecosystems at lower latitude

    Retrospective analysis of wood anatomical traits and tree-ring isotopes suggests site-specific mechanisms triggering Araucaria araucana drought-induced dieback

    Get PDF
    In 2010–2018, Northern Patagonia featured the longest severe drought of the last millennium. This extreme dry spell triggered widespread growth decline and forest dieback. Nonetheless, the roles played by the two major mechanisms driving dieback, hydraulic failure and carbon starvation, are still not clear and understudied in this seasonally dry region. Here, for the 1800–2017 period, we apply a retrospective analysis of radial growth, wood anatomical traits (lumen area, cell-wall thickness) and ή13C and ή18O stable isotopes to assess dieback causes of the iconic conifer Araucaria araucana. We selected three stands where declining (defoliated) and nondeclining (not defoliated) trees coexisted along a precipitation gradient from the warm-dry Coastal Range to the cool-wet Andes. At all sites declining trees showed lower radial growth and lower theoretical hydraulic conductivity, suggesting a long-lasting process of hydraulic deterioration in their water transport system compared to nondeclining, coexisting trees. Wood anatomical traits evidenced that this divergence between declining and nondeclining trees started at least seven decades before canopy dieback. In the drier stands, declining trees showed higher water-use efficiency (WUE) throughout the whole period, which we attributed to early stomatal closure, suggesting a greater carbon starvation risk consistent with thinner cell walls. In the wettest stand, we found the opposite pattern. Here, a reduction in WUE coupled with thicker cell walls suggested increased carbon assimilation rates and exposure to drought-induced hydraulic failure. The ή18O values indicated different strategies of gas exchange between sites, which are likely a consequence of microsite conditions and water sources. Multiproxy, retrospective quantifications of xylem anatomical traits and tree-ring isotopes provide a robust tool to identify and forecast, which stands or trees will show dieback or, on the contrary, which will likely withstand and be more resilient to future hotter droughts

    Contrasting patterns of water use efficiency and annual radial growth among European beech forests along the Italian peninsula

    No full text
    Tree mortality and forest dieback episodes are increasing due to drought and heat stress. Nevertheless, a comprehensive understanding of mechanisms enabling trees to withstand and survive droughts remains lacking. Our study investigated basal area increment (BAI), and ÎŽ13C-derived intrinsic water-use-efficiency (iWUE), to elucidate beech resilience across four healthy stands in Italy with varying climates and soil water availability. Additionally, fist-order autocorrelation (AR1) analysis was performed to detect early warning signals for potential tree dieback risks during extreme drought events. Results reveal a negative link between BAI and vapour pressure deficit (VPD), especially in southern latitudes. After the 2003 drought, BAI decreased at the northern site, with an increase in ÎŽ13C and iWUE, indicating conservative water-use. Conversely, the southern sites showed increased BAI and iWUE, likely influenced by rising CO2 and improved water availability. In contrast, the central site sustained higher transpiration rates due to higher soil water holding capacity (SWHC). Despite varied responses, most sites exhibited reduced resilience to future extreme events, indicated by increased AR1. Temperature significantly affected beech iWUE and BAI in northern Italy, while VPD strongly influenced the southern latitudes. The observed increase in BAI and iWUE in southern regions might be attributed to an acclimation response

    Dendrohydrology and water resources management in south-central Chile: lessons from the RĂ­o Imperial streamflow reconstruction

    Get PDF
    Streamflow in south-central Chile (SCC, â€‰âˆŒâ€‰â€Ż37–42° S) is vital for agriculture, forestry production, hydroelectricity, and human consumption. Recent drought episodes have generated hydrological deficits with damaging effects on these activities. This region is projected to undergo major reductions in water availability, concomitant with projected increases in water demand. However, the lack of long-term records hampers the development of accurate estimations of natural variability and trends. In order to provide more information on long-term streamflow variability and trends in SCC, here we report findings of an analysis of instrumental records and a tree-ring reconstruction of the summer streamflow of the RĂ­o Imperial (â€‰âˆŒâ€‰â€Ż37° 40â€Č S–38° 50â€Č S). This is the first reconstruction in Chile targeted at this season. Results from the instrumental streamflow record (â€‰âˆŒâ€‰â€Ż1940 onwards) indicated that the hydrological regime is fundamentally pluvial with a small snowmelt contribution during spring, and evidenced a decreasing trend, both for the summer and the full annual record. The reconstruction showed that streamflow below the average characterized the post-1980 period, with more frequent, but not more intense, drought episodes. We additionally found that the recent positive phase of the Southern Annular Mode has significantly influenced streamflow. These findings agree with previous studies, suggesting a robust regional signal and a shift to a new hydrological scenario. In this paper, we also discuss implications of these results for water managers and stakeholders; we provide rationale and examples that support the need for the incorporation of tree-ring reconstructions into water resources management

    Influence of tip defect and indenter shape on the mechanical properties determination by indentation of a TiB₂-60%B₄C ceramic composite

    No full text
    Instrumented indentation is very useful to determine the elastic modulus and hardness of materials. To obtain reliable values of the mechanical properties, the measurement of the indenter displacement into the material must be very precise. In practice, the frame compliance of the instrument and the indenter tip defect are among the most influential parameters. In microindentation, the frame compliance term must be calculated for each analysis. On the other hand, the tip defect can lead to a wrong estimation of the contact area, which is involved in both the elastic modulus and the hardness calculations. The present work is mainly focused on the influence of the tip defect on the determination of the mechanical properties of a composite TiB₂–60% B₄C hard material using Berkovich, Vickers, Knoop and spherical indenters. This composite system was obtained by sintering in vacuum, employing a pulsed electric current, without any sintering additives. It has been shown that the tip defect greatly affects the results related to the mechanical properties of the system under study, even for low defect sizes, which are usually neglected in practice. After correction, the elastic modulus of the TiB₂–60% B₄C is found to be equal to 490 GPa whatever the indenter shape used. This result corroborates the value of 500 GPa found for this system by employing the resonance frequency method according to the ASTM Standard e1876-99. For analyzing the hardness-load dependence, the representative parameter of the Proportional Specimen Resistance model becomes null when the tip defect is introduced into the hardness calculation. Additionally, this parameter is found to be directly proportional to the tip defect size, suggesting a special attention when characterizing the indentation size effect of materials. Finally, the Meyer hardness found for the TiB₂–60% B₄C is close to 20 GPa.status: publishe
    corecore