300 research outputs found

    U.S. antidumping: much ado about zeroing

    Get PDF
    The United States use of"zeroing"in its antidumping procedures has become a political flash point threatening some legitimacy of the WTO's dispute settlement system. This paper provides a positive analysis of the zeroing issue, explains how it has evolved and who is likely to be affected by it. The authors use economic theory to identify how export price volatility accentuates the impact of zeroing on the size of U.S. antidumping tariffs and review the WTO caseload over zeroing. They describe the impact that the U.S.'s retrospective system for assessing antidumping margins has on zeroing and the political economy implications as the U.S. struggles to generate policy reform. The authors survey existing evidence of the impact of the zeroing on dumping margins and contribute their own evidence to suggest that zeroing is just as likely to impact the size of U.S. antidumping duties applied on developing country exportsas developed economy exports. Thus while developed economies have filed the vast majority of WTO disputes against the U.S. over zeroing, the authors conclude that zeroing is also likely a relevant issue for developing country exporters as over 60 percent of the product lines currently subject to U.S. antidumping are exported by developing countries.Markets and Market Access,Economic Theory&Research,Trade Law,Access to Markets,Emerging Markets

    Determinants of response to a parent questionnaire about development and behaviour in 3 year olds: European multicentre study of congenital toxoplasmosis.

    Get PDF
    Background: We aimed to determine how response to a parent-completed postal questionnaire measuring development, behaviour, impairment, and parental concerns and anxiety, varies in different European centres. Methods: Prospective cohort study of 3 year old children, with and without congenital toxoplasmosis, who were identified by prenatal or neonatal screening for toxoplasmosis in 11 centres in 7 countries. Parents were mailed a questionnaire that comprised all or part of existing validated tools. We determined the effect of characteristics of the centre and child on response, age at questionnaire completion, and response to child drawing tasks. Results: The questionnaire took 21 minutes to complete on average. 67% (714/1058) of parents responded. Few parents (60/1058) refused to participate. The strongest determinants of response were the score for organisational attributes of the study centre (such as direct involvement in follow up and access to an address register), and infection with congenital toxoplasmosis. Age at completion was associated with study centre, presence of neurological abnormalities in early infancy, and duration of prenatal treatment. Completion rates for individual questions exceeded 92% except for child completed drawings of a man (70%), which were completed more by girls, older children, and in certain centres. Conclusion: Differences in response across European centres were predominantly related to the organisation of follow up and access to correct addresses. The questionnaire was acceptable in all six countries and offers a low cost tool for assessing development, behaviour, and parental concerns and anxiety, in multinational studies

    Characteristics of magnetic solar-like cycles in a 3D MHD simulation of solar convection

    Get PDF
    We analyse the statistical properties of the stable magnetic cycle unfolding in an extended 3D magnetohydroclynamic simulation of solar convection produced with the EULAG-MHD code. The millennium,simulation spans over 1650 years, in the course of which forty polarity reversals take place on a regular similar to 40yr cadence, remaining well-synchronized across solar hemispheres. In order to characterize this cycle and facilitate its comparison with measures typically used to represent solar activity, we build two proxies for the magnetic field in the simulation mimicking the solar toroidal field and the polar radial field. Several quantities that characterize the cycle are measured (period, amplitudes, etc.) and correlations between them are computed, These are then compared with their observational analogs. From the typical Gnevyshesv-Ohl pattern, to hints of Gleissberg modulation the simulated cycles share many of the characteristics of their observational analogs even though the simulation lacks poloidal field regeneration through active region decay, a mechanism nowadays often considered an essential component of the solar dynamo. Some significant discrepancies are, also identified, most notably the in-phase variation of the simulated poloidal and toroidal large-scale magnetic components, and the low degree of hemispheric coupling at the level of hemispheric cycle amplitudes. Possible causes underlying these discrepancies are discussed.Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/68409/2010]; CENTRA-IST; Natural Sciences and Engineering Research Council of Canadainfo:eu-repo/semantics/publishedVersio

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte

    mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression.

    Get PDF
    Schwann cell development is hallmarked by the induction of a lipogenic profile. Here we used amniotic fluid stem (AFS) cells and focused on the mechanisms occurring during early steps of differentiation along the Schwann cell lineage. Therefore, we initiated Schwann cell differentiation in AFS cells and monitored as well as modulated the activity of the mechanistic target of rapamycin (mTOR) pathway, the major regulator of anabolic processes. Our results show that mTOR complex 1 (mTORC1) activity is essential for glial marker expression and expression of Sterol Regulatory Element-Binding Protein (SREBP) target genes. Moreover, SREBP target gene activation by statin treatment promoted lipogenic gene expression, induced mTORC1 activation and stimulated Schwann cell differentiation. To investigate mTORC1 downstream signaling we expressed a mutant S6K1, which subsequently induced the expression of the Schwann cell marker S100b, but did not affect lipogenic gene expression. This suggests that S6K1 dependent and independent pathways downstream of mTORC1 drive AFS cells to early Schwann cell differentiation and lipogenic gene expression. In conclusion our results propose that future strategies for peripheral nervous system regeneration will depend on ways to efficiently induce the mTORC1 pathway

    Multi-scale waves in sound-proof global simulations with EULAG

    Get PDF
    EULAG is a computational model for simulating flows across a wide range of scales and physical scenarios. A standard option employs an anelastic approximation to capture nonhydrostatic effects and simultaneously filter sound waves from the solution. In this study, we examine a localized gravity wave packet generated by instabilities in Held-Suarez climates. Although still simplified versus the Earth’s atmosphere, a rich set of planetary wave instabilities and ensuing radiated gravity waves can arise. Wave packets are observed that have lifetimes ≤ 2 days, are negligibly impacted by Coriolis force, and do not show the rotational effects of differential jet advection typical of inertia-gravity waves. Linear modal analysis shows that wavelength, period, and phase speed fit the dispersion equation to within a mean difference of ∼ 4%, suggesting an excellent fit. However, the group velocities match poorly even though a propagation of uncertainty analysis indicates that they should be predicted as well as the phase velocities. Theoretical arguments suggest the discrepancy is due to nonlinearity — a strong southerly flow leads to a critical surface forming to the southwest of the wave packet that prevents the expected propagation

    Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation

    Get PDF
    Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin’s C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols
    corecore