1,326 research outputs found
Red Footed Tortoises in Captivity
This is where the abstract of this record would appear. This is only demonstration data
Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOB(T)).
Syntrophobacter fumaroxidans strain MPOB(T) is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project
Recommended from our members
Modelling road hazards and the effect on AV safety of hazardous failures
Autonomous vehicles (AV) are about to appear on our roads within the next few years. However, to achieve the final breakthrough, not only functional progress is required, but also fundamental safety questions must be solved. Among those, a question demanding special attention is the need to assess the overall safety of an AV and quantify that it is safe enough to take part in normal traffic despite its inherent imperfections. Therefore, this paper describes a probabilistic model, which allows to study how imperfections of an AV perception system and of mechanisms responsible for AV safety (e.g., Safety Monitors), can impact AV safety in the presence of road hazards. We also demonstrate how the model can be used to validate if the AV is safe enough, to understand the criticality of (perception) errors, and to identify areas/parameters that have more influence on safety than others
Анализ причин возникновения врожденных пороков сердца у новорожденных по данным ВДОКБ
ПОРОКИ СЕРДЦА ВРОЖДЕННЫЕСЕРДЕЧНО-СОСУДИСТЫЕ АНОМАЛИИСЕРДЦА БОЛЕЗНИНОВОРОЖДЕННЫЙ, БОЛЕЗН
Effect of Cobalt–Chromium–Molybdenum implant surface modifications on biofilm development of S. aureus and S. epidermidis
Periprosthetic infections are an eminent factor in patient care and also having significant economic implications. The number of biofilm-infection related replacement surgeries is increasing and will continue to do so in the following decades. To reduce both the health burden of the patients and the costs to the healthcare sector, new solutions for implant materials resistant to such infections are necessary. This study researches different surface modifications of cobalt–chromium–molybdenum (CoCrMo) based implant materials and their influence on the development of biofilms. Three smooth surfaces (CoCrMo, CoCrMo TiN, and CoCrMo polished) and three rough surfaces (CoCrMo porous coated, CoCrMo cpTi, and CoCrMo TCP) are compared. The most common infectious agents in periprosthetic infections are Staphylococcus aureus and Coagulase-negative staphylococci (e.g., Staphylococcus epidermidis), therefore strains of these two species have been chosen as model organisms. Biofilms were grown on material disks for 48 h and cell number, polysaccharide content, and protein contend of the biofilms were measured. Additionally, regulation of genes involved in early biofilm development (S. aureus icaA, icaC, fnbA, fnbB, clfB, atl; S. epidermidis atlE, aap) was detected using RT-q-PCR. All results were compared to the base alloy without modifications. The results show a correlation between the surface roughness and the protein and polysaccharide content of biofilm structures and also the gene expression of the biofilms grown on the different surface modifications. This is supported by the significantly different protein and polysaccharide contents of the biofilms associated with rough and smooth surface types. Additionally, early phase biofilm genes (particularly icaA, icaC, and aap) are statistically significantly downregulated compared to the control at 48 h on rough surfaces. CoCrMo TiN and polished CoCrMo were the two smooth surface modifications which performed best on the basis of low biofilm content
- …