52 research outputs found

    The response of surface ozone to climate change over the Eastern United States

    Get PDF
    International audienceWe investigate the response of surface ozone (O3) to future climate change in the eastern United States by performing simulations corresponding to present (1990s) and future (2050s) climates using an integrated model of global climate, tropospheric gas-phase chemistry, and aerosols. A future climate has been imposed using ocean boundary conditions corresponding to the IPCC SRES A2 scenario for the 2050s decade. Present-day anthropogenic emissions and CO2/CH4 mixing ratios have been used in both simulations while climate-sensitive emissions were allowed to vary with the simulated climate. The severity and frequency of O3 episodes in the eastern U.S. increased due to future climate change, primarily as a result of increased O3 chemical production. The 95th percentile O3 mixing ratio increased by 5 ppbv and the largest frequency increase occured in the 80?90 ppbv range; the US EPA's current 8-h ozone primary standard is 80 ppbv. The increased O3 chemical production is due to increases in: 1) natural isoprene emissions; 2) hydroperoxy radical concentrations resulting from increased water vapor concentrations; and, 3) NOx concentrations resulting from reduced PAN. The most substantial and statistically significant (p3 season over the eastern U.S. in a future climate to include late spring and early fall months. Increased chemical production and shorter average lifetime are two consistent features of the seasonal response of surface O3, with increased dry deposition loss rates contributing most to the reduced lifetime in all seasons except summer. Significant interannual variability is observed in the frequency of O3 episodes and we find that it is necessary to utilize 5 years or more of simulation data in order to separate the effects of interannual variability and climate change on O3 episodes in the eastern United States

    Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign

    Get PDF
    PMCAMx-2008, a detailed three-dimensional chemical transport model (CTM), was applied to Europe to simulate the mass concentration and chemical composition of particulate matter (PM) during May 2008. The model includes a state-of-the-art organic aerosol module which is based on the volatility basis set framework treating both primary and secondary organic components as semivolatile and photochemically reactive. The model performance is evaluated against high time resolution aerosol mass spectrometer (AMS) ground and airborne measurements. Overall, organic aerosol is predicted to account for 32% of total PM<sub>1</sub> at ground level during May 2008, followed by sulfate (30%), crustal material and sea-salt (14%), ammonium (13%), nitrate (7%), and elemental carbon (4%). The model predicts that fresh primary OA (POA) is a small contributor to organic PM concentrations in Europe during late spring, and that oxygenated species (oxidized primary and biogenic secondary) dominate the ambient OA. The Mediterranean region is the only area in Europe where sulfate concentrations are predicted to be much higher than the OA, while organic matter is predicted to be the dominant PM<sub>1</sub> species in central and northern Europe. The comparison of the model predictions with the ground measurements in four measurement stations is encouraging. The model reproduces more than 94% of the daily averaged data and more than 87% of the hourly data within a factor of 2 for PM<sub>1</sub> OA. The model tends to predict relatively flat diurnal profiles for PM<sub>1</sub> OA in many areas, both rural and urban in agreement with the available measurements. The model performance against the high time resolution airborne measurements at multiple altitudes and locations is as good as its performance against the ground level hourly measurements. There is no evidence of missing sources of OA aloft over Europe during this period

    Smart Tourism Destinations: Can the Destination Management Organizations Exploit Benefits of the ICTs? Evidences from a Multiple Case Study

    Get PDF
    Recent developments of ICTs enable new ways to experience tourism and conducted to the concept of smart tourism. The adoption of cutting-edge technologies and its combination with innovative organizational models fosters cooperation, knowledge sharing, and open innovation among service providers in tourism destination. Moreover, it offers innovative services to visitors. In few words, they become smart tourism destinations. In this paper, we report first results of the SMARTCAL project aimed at conceiving a digital platform assisting Destination Management Organizations (DMOs) in providing smart tourism services. A DMO is the organization charged with managing the tourism offer of a collaborative network, made up of service providers acting in a destination. In this paper, we adopted a multiple case studies approach to analyze five Italian DMOs. Our aims were to investigate (1) if, and how, successful DMOs were able to offer smart tourism services to visitors; (2) if the ICTs adoption level was related to the collaboration level among DMO partners. First results highlighted that use of smart technologies was still in an embryonic stage of development, and it did not depend from collaboration levels

    Understanding uncertainties in future Colorado River streamflow

    Get PDF
    Artículo -- Universidad de Costa Rica. Centro de Investigaciones Geofísicas, 2014The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamflow changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamflows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.Universidad de Costa Rica. Centro de Investigaciones GeofísicasLamont-Doherty Earth Observatory of Columbia UniversityUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI

    Impacts of climate change on regional and urban air quality in the eastern United States: Role of meteorology

    No full text
    [1] The effects of climate change on ozone and PM2.5 concentrations over the eastern United States were investigated using the Global-Regional Coupled Air Pollution modeling System (GRE-CAPS). GRE-CAPS consists of the Goddard Institute for Space Studies (GISS) II' general circulation model with aerosol processes and ozone chemistry, the fifth-generation PSU/NCAR mesoscale model (MM5) regional meteorological model, and the Comprehensive Air Quality Model with Extensions (CAMx) with aerosol (PM) processes developed at Carnegie Mellon University (PMCAMx) regional chemical transport model. A set of five present-day Januaries and six present-day Julys was simulated using GRE-CAPS. The present-day model predictions (2000s) were compared to model predictions for a set of five future Januaries and Julys. The future time period investigated was the 2050s, using the Intergovernmental Panel on Climate Change A2 scenario. U.S. emissions of biogenic and anthropogenic precursors were held constant so that the effects of climate change alone could be calculated. Climate change led to a decrease in U.S. land cell average January PM2.5 concentrations of 0.3 μg m−3 and an increase of July PM2.5 of 2.5 μg m−3. The changes in PM in the Northeast were of the opposite sign of the domain-wide averages. The response in January was due largely to increased precipitation, while the response in July was due primarily to decreased ventilation, as indicated by decreases in mixing height and wind speed, with increases in sulfate being the largest response by a single species. The U.S. land cell average change in July daily maximum 8-h ozone concentration was +1.7 ppb, though the increases in cities in the Southeast were up to 15 ppb. In spite of the large differences in ozone in many areas, the changes in ozone concentration were not statistically significant over most of the domain because of large interannual variability. In separate simulations to test the sensitivity of ozone concentrations to biogenic emissions, a 25% increase in biogenic U.S. volatile organic compound emissions led to an additional increase in land cell average ozone of 0.7 ppb, though the increased ozone resulting from increased biogenics was largely statistically insignificant.</p

    Evaluation of a three-dimensional chemical transport model (pmcamx) in the european domain during the eucaari may 2008 campaign

    No full text
    PMCAMx-2008, a detailed three-dimensional chemical transport model (CTM), was applied to Europe to simulate the mass concentration and chemical composition of particulate matter (PM) during May 2008. The model includes a state-of-the-art organic aerosol module which is based on the volatility basis set framework treating both primary and secondary organic components as semivolatile and photochemically reactive. The model performance is evaluated against high time resolution aerosol mass spectrometer (AMS) ground and airborne measurements. Overall, organic aerosol is predicted to account for 32% of total PM1 at ground level during May 2008, followed by sulfate (30%), crustal material and sea-salt (14%), ammonium (13%), nitrate (7%), and elemental carbon (4%). The model predicts that fresh primary OA (POA) is a small contributor to organic PM concentrations in Europe during late spring, and that oxygenated species (oxidized primary and biogenic secondary) dominate the ambient OA. The Mediterranean region is the only area in Europe where sulfate concentrations are predicted to be much higher than the OA, while organic matter is predicted to be the dominant PM1 species in central and northern Europe. The comparison of the model predictions with the ground measurements in four measurement stations is encouraging. The model reproduces more than 94% of the daily averaged data and more than 87% of the hourly data within a factor of 2 for PM1 OA. The model tends to predict relatively flat diurnal profiles for PM1 OA in many areas, both rural and urban in agreement with the available measurements. The model performance against the high time resolution airborne measurements at multiple altitudes and locations is as good as its performance against the ground level hourly measurements. There is no evidence of missing sources of OA aloft over Europe during this period
    corecore