38 research outputs found

    Evolution of collision numbers for a chaotic gas dynamics

    Full text link
    We put forward a conjecture of recurrence for a gas of hard spheres that collide elastically in a finite volume. The dynamics consists of a sequence of instantaneous binary collisions. We study how the numbers of collisions of different pairs of particles grow as functions of time. We observe that these numbers can be represented as a time-integral of a function on the phase space. Assuming the results of the ergodic theory apply, we describe the evolution of the numbers by an effective Langevin dynamics. We use the facts that hold for these dynamics with probability one, in order to establish properties of a single trajectory of the system. We find that for any triplet of particles there will be an infinite sequence of moments of time, when the numbers of collisions of all three different pairs of the triplet will be equal. Moreover, any value of difference of collision numbers of pairs in the triplet will repeat indefinitely. On the other hand, for larger number of pairs there is but a finite number of repetitions. Thus the ergodic theory produces a limitation on the dynamics.Comment: 4 pages, published versio

    Achieving population-level immunity to rabies in free-roaming dogs in Africa and Asia.

    Get PDF
    Canine rabies can be effectively controlled by vaccination with readily available, high-quality vaccines. These vaccines should provide protection from challenge in healthy dogs, for the claimed period, for duration of immunity, which is often two or three years. It has been suggested that, in free-roaming dog populations where rabies is endemic, vaccine-induced protection may be compromised by immuno-suppression through malnutrition, infection and other stressors. This may reduce the proportion of dogs that seroconvert to the vaccine during vaccination campaigns and the duration of immunity of those dogs that seroconvert. Vaccination coverage may also be limited through insufficient vaccine delivery during vaccination campaigns and the loss of vaccinated individuals from populations through demographic processes. This is the first longitudinal study to evaluate temporal variations in rabies vaccine-induced serological responses, and factors associated with these variations, at the individual level in previously unvaccinated free-roaming dog populations. Individual-level serological and health-based data were collected from three cohorts of dogs in regions where rabies is endemic, one in South Africa and two in Indonesia. We found that the vast majority of dogs seroconverted to the vaccine; however, there was considerable variation in titres, partly attributable to illness and lactation at the time of vaccination. Furthermore, >70% of the dogs were vaccinated through community engagement and door-to-door vaccine delivery, even in Indonesia where the majority of the dogs needed to be caught by net on successive occasions for repeat blood sampling and vaccination. This demonstrates the feasibility of achieving population-level immunity in free-roaming dog populations in rabies-endemic regions. However, attrition of immune individuals through demographic processes and waning immunity necessitates repeat vaccination of populations within at least two years to ensure communities are protected from rabies. These findings support annual mass vaccination campaigns as the most effective means to control canine rabies.This study was funded by the International Fund for Animal Welfare (IFAW) http://www.ifaw.org/united-kingdom and the World Society for the Protection of Animals (WSPA) http://www.wspa.org.uk/, with support from the Charles Slater Fund and Jowett Fund. OR is supported by the Royal Society, and JLNW the Alborada Trust. JLNW, OR and ARF receive support from the Research and Policy for Infectious Disease Dynamics Program of the Science and Technology Directorate, Department of Homeland Security, Fogarty International Centre, National Institute of Health. DLH and ARF are supported by the U.K. Department for the Environment, Food and Rural Affairs project number SEV3500. TJM is supported by Biotechnology and Biological Sciences Research Council grant number BB/I012192/1.This is the final version. It was first published by PLOS in PLOS Neglected Tropical Diseases at http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003160

    Achieving population-level immunity to rabies in free-roaming dogs in Africa and Asia

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tCanine rabies can be effectively controlled by vaccination with readily available, high-quality vaccines. These vaccines should provide protection from challenge in healthy dogs, for the claimed period, for duration of immunity, which is often two or three years. It has been suggested that, in free-roaming dog populations where rabies is endemic, vaccine-induced protection may be compromised by immuno-suppression through malnutrition, infection and other stressors. This may reduce the proportion of dogs that seroconvert to the vaccine during vaccination campaigns and the duration of immunity of those dogs that seroconvert. Vaccination coverage may also be limited through insufficient vaccine delivery during vaccination campaigns and the loss of vaccinated individuals from populations through demographic processes. This is the first longitudinal study to evaluate temporal variations in rabies vaccine-induced serological responses, and factors associated with these variations, at the individual level in previously unvaccinated free-roaming dog populations. Individual-level serological and health-based data were collected from three cohorts of dogs in regions where rabies is endemic, one in South Africa and two in Indonesia. We found that the vast majority of dogs seroconverted to the vaccine; however, there was considerable variation in titres, partly attributable to illness and lactation at the time of vaccination. Furthermore, >70% of the dogs were vaccinated through community engagement and door-to-door vaccine delivery, even in Indonesia where the majority of the dogs needed to be caught by net on successive occasions for repeat blood sampling and vaccination. This demonstrates the feasibility of achieving population-level immunity in free-roaming dog populations in rabies-endemic regions. However, attrition of immune individuals through demographic processes and waning immunity necessitates repeat vaccination of populations within at least two years to ensure communities are protected from rabies. These findings support annual mass vaccination campaigns as the most effective means to control canine rabies.This study was funded by the International Fund for Animal Welfare (IFAW) http://www.ifaw.org/united-kingdom and the World Society for the Protection of Animals (WSPA) http://www.wspa.org.uk/, with support from the Charles Slater Fund and Jowett Fund. OR is supported by the Royal Society, and JLNW the Alborada Trust. JLNW, OR and ARF receive support from the Research and Policy for Infectious Disease Dynamics Program of the Science and Technology Directorate, Department of Homeland Security, Fogarty International Centre, National Institute of Health. DLH and ARF are supported by the U.K. Department for the Environment, Food and Rural Affairs project number SEV3500. TJM is supported by Biotechnology and Biological Sciences Research Council grant number BB/I012192/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The vaccination of 35,000 dogs in 20 working days using combined static point and door-to-door methods in Blantyre, Malawi

    Get PDF
    An estimated 60,000 people die of rabies annually. The vast majority of cases of human rabies develop following a bite from an infected dog. Rabies can be controlled in both human and canine populations through widespread vaccination of dogs. Rabies is particularly problematic in Malawi, costing the country an estimated 13 million USD and 484 human deaths annually, with an increasing paediatric incidence in Blantyre City. Consequently, the aim of this study was to vaccinate a minimum of 75% of all the dogs within Blantyre city during a one month period. Blantyre's 25 administrative wards were divided into 204 working zones. For initial planning, a mean human:dog ratio from the literature enabled estimation of dog population size and dog surveys were then performed in 29 working zones in order to assess dog distribution by land type. Vaccination was conducted at static point stations at weekends, at a total of 44 sites, with each operating for an average of 1.3 days. On Monday to Wednesday, door-to-door vaccination sessions were undertaken in the areas surrounding the preceding static point stations. 23,442 dogs were vaccinated at static point stations and 11,774 dogs were vaccinated during door-to-door vaccinations. At the end of the 20 day vaccination programme, an assessment of vaccination coverage through door-to-door surveys found that of 10,919 dogs observed, 8,661 were vaccinated resulting in a vaccination coverage of 79.3% (95%CI 78.6-80.1%). The estimated human:dog ratio for Blantyre city was 18.1:1. Mobile technology facilitated the collection of data as well as efficient direction and coordination of vaccination teams in near real time. This study demonstrates the feasibility of vaccinating large numbers of dogs at a high vaccination coverage, over a short time period in a large African city

    Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery

    Get PDF
    Rabies remains a disease of significant public health concern. In the Americas, bats are an important source of rabies for pets, livestock, and humans. For effective rabies control and prevention, identifying potential areas for disease occurrence is critical to guide future research, inform public health policies, and design interventions. To anticipate zoonotic infectious diseases distribution at coarse scale, veterinary epidemiology needs to advance via exploring current geographic ecology tools and data using a biological approach. We analyzed bat-borne rabies reports in Chile from 2002 to 2012 to establish associations between rabies occurrence and environmental factors to generate an ecological niche model (ENM). The main rabies reservoir in Chile is the bat species Tadarida brasiliensis; we mapped 726 occurrences of rabies virus variant AgV4 in this bat species and integrated them with contemporary Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The correct prediction of areas with rabies in bats and the reliable anticipation of human rabies in our study illustrate the usefulness of ENM for mapping rabies and other zoonotic pathogens. Additionally, we highlight critical issues with selection of environmental variables, methods for model validation, and consideration of sampling bias. Indeed, models with weak or incorrect validation approaches should be interpreted with caution. In conclusion, ecological niche modeling applications for mapping disease risk at coarse geographic scales have a promising future, especially with refinement and enrichment of models with additional information, such as night-time light data, which increased substantially the model’s ability to anticipate human rabies

    Investigation of short-term surgical complications in a low-resource, high-volume dog sterilisation clinic in India

    Get PDF
    Abstract Background Surgical sterilisation is currently the method of choice for controlling free-roaming dog populations. However, there are significant logistical challenges to neutering large numbers of dogs in low-resource clinics. The aim of this study was to investigate the incidence of short-term surgical complications in a low-resource sterilisation clinic which did not routinely administer post-operative antibiotics. The medical records of all sterilisation surgeries performed in 2015 at the Worldwide Veterinary Service International Training Centre in Tamil Nadu, India were reviewed (group A) to assess immediate surgical complications. All animals in this group were monitored for at least 24 h post-surgery but were not released until assessed by a veterinarian as having uncomplicated wound healing. In the second part of this study from August to December 2015, 200 free-roaming dogs undergoing sterilisation surgery, were monitored for a minimum of 4-days post-surgery to further assess postoperative complications (group B). Results Surgery related complications were seen in 5.4% (95%CI, 4.5–6.5%) of the 1998 group A dogs monitored for at least 24 h, and in 7.0% (3.9–11.5%) of the 200 group B dogs monitored for 4 days. Major complications were classed as those requiring an intervention and resulted in increased morbidity or mortality. Major complications were seen in 2.8% (2.1–3.6%) and 1.5% (3.1–4.3%) of group A and B, respectively. Minor complications requiring little or no intervention were recorded for 2.6% (1.9–3.4%) for group A and 5.5% (2.8–9.6%) for group B. There was no evidence for a difference in complication rates between the two groups in a multivariate regression model. Conclusion This study demonstrated that high volume, low-resource sterilisation of dogs can be performed with a low incidence of surgical complications and low mortality

    Scoping review of indicators and methods of measurement used to evaluate the impact of dog population management interventions

    Get PDF
    Background: Dogs are ubiquitous in human society and attempts to manage their populations are common to most countries. Managing dog populations is achieved through a range of interventions to suit the dog population dynamics and dog ownership characteristics of the location, with a number of potential impacts or goals in mind. Impact assessment provides the opportunity for interventions to identify areas of inefficiencies for improvement and build evidence of positive change. Methods: This scoping review collates 26 studies that have assessed the impacts of dog population management interventions. Results: It reports the use of 29 indicators of change under 8 categories of impact and describes variation in the methods used to measure these indicators. Conclusion: The relatively few published examples of impact assessment in dog population management suggest this field is in its infancy; however this review highlights those notable exceptions. By describing those indicators and methods of measurement that have been reported thus far, and apparent barriers to efficient assessment, this review aims to support and direct future impact assessment

    Effective vaccination against rabies in puppies in rabies endemic regions

    Get PDF
    This is the author accepted manuscript. The final version is available from BMJ Group via http://dx.doi.org/10.1136/vr.102975In rabies endemic regions, a proportionally higher incidence of rabies is often reported in dogs younger than 12 months of age, which includes puppies less than 3 months of age; this presents a serious risk to public health. The higher incidence of rabies in young dogs may be the effect of low vaccination coverage in this age class, partly as a result of the perception that immature immune systems and maternal antibodies inhibit seroconversion to rabies vaccine in puppies less than 3 months of age. Therefore, to test this perception, we report the virus neutralizing antibody titres from dogs that were vaccinated with high quality, inactivated rabies vaccine aged 3 months of age and under as part of larger serological studies undertaken in Gauteng Province, South Africa, and the Serengeti District, Tanzania. All of these dogs seroconverted to a single dose of vaccine with no adverse reactions reported and with post?vaccinal peak titres ranging from 2.0 ? 90.5 IU/ml. In light of these results, and the risk of humans contracting rabies from close contact with puppies, we recommend that all dogs in rabies endemic regions, including those less than 3 months of age, are vaccinated with high quality, inactivated vaccine.Funding for the study in Zenzele was provided by the International Fund for Animal Welfare (IFAW) and World Animal Protection (WAP). Funding for the study in Tanzania was provided by the RCVS Small Grant Programme and the University of Edinburgh Small Grant Scholarship Program. Dog vaccines for the Serengeti study were donated by MSD Animal Health. Partial funding for the APHA was provided by the UK Department for Environment and Rural Affairs (Project SV3500). JW receives support from the Alborada Trust and the Research and Policy for Infectious Disease Dynamics Program of the Science and Technology Directorate, Department of Homeland Security, Fogarty International Centre, National Institute of Health
    corecore