116 research outputs found

    An ion mobility mass spectrometer coupled with a cryogenic ion trap for recording electronic spectra of charged, isomer-selected clusters

    Get PDF
    Infrared and electronic spectra are indispensable for understanding the structural and energetic properties of charged molecules and clusters in the gas phase. However, the presence of isomers can potentially complicate the interpretation of spectra, even if the target molecules or clusters are mass-selected beforehand. Here, we describe an instrument for spectroscopically characterizing charged molecular clusters that have been selected according to both their isomeric form and their mass-to-charge ratio. Cluster ions generated by laser ablation of a solid sample are selected according to their collision cross sections with helium buffer gas using a drift tube ion mobility spectrometer and their mass-to-charge ratio using a quadrupole mass filter. The mobility- and mass-selected target ions are introduced into a cryogenically cooled, three-dimensional quadrupole ion trap where they are thermalized through inelastic collisions with an inert buffer gas (He or He/N2 mixture). Spectra of the molecular ions are obtained by tagging them with inert atoms or molecules (Ne and N2), which are dislodged following resonant excitation of an electronic transition, or by photodissociating the cluster itself following absorption of one or more photons. An electronic spectrum is generated by monitoring the charged photofragment yield as a function of wavelength. The capacity of the instrument is illustrated with the resonance-enhanced photodissociation action spectra of carbon clusters (Cn+) and polyacetylene cations (HC2nH+) that have been selected according to the mass-to-charge ratio and collision cross section with He buffer gas and of mass-selected Au2+ and Au2Ag+ clusters

    Chronic lymphocytic leukaemia Australasian consensus practice statement

    Get PDF
    Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in Australia and New Zealand (ANZ). Considerable changes to diagnostic and management algorithms have occurred within the last decade. The availability of next-generation sequencing and measurable residual disease assessment by flow cytometry allow for advanced prognostication and response assessments. Novel therapies, including inhibitors of Bruton's tyrosine kinase (BTKi) and B-cell lymphoma 2 (BCL2) inhibitors, have transformed the treatment landscape for both treatment-naïve and relapsed/refractory disease, particularly for patients with high-risk genetic aberrations. Recommendations regarding appropriate supportive management continue to evolve, and special considerations are required for patients with CLL with respect to the global SARS-CoV-2 pandemic. The unique funding and treatment environments in Australasia highlight the need for specific local guidance with respect to the investigation and management of CLL. This consensus practice statement was developed by a broadly representative group of ANZ experts in CLL with endorsement by peak haematology bodies, with a view to providing this standardised guidance

    Biomarker analysis of the ASPEN study comparing zanubrutinib with ibrutinib for patients with Waldenström macroglobulinemia

    Get PDF
    The phase 3 ASPEN trial (NCT03053440) compared Bruton tyrosine kinase inhibitors (BTKis), zanubrutinib and ibrutinib, in patients with Waldenström macroglobulinemia (WM). Post-hoc biomarker analysis was performed using next-generation sequencing on pretreatment bone marrow samples from 98 patients treated with zanubrutinib and 92 patients treated with ibrutinib with mutated (MUT) MYD88 and 20 patients with wild-type (WT) MYD88 treated with zanubrutinib. Of 329 mutations in 52 genes, mutations in CXCR4 (25.7%), TP53 (24.8%), ARID1A (15.7%), and TERT (9.0%) were most common. TP53MUT, ARID1AMUT, and TERTMUTwere associated with higher rates of CXCR4MUT(P < .05). Patients with CXCR4MUT(frameshift or nonsense [NS] mutations) had lower very good partial response (VGPR) and complete response rates (CR; 17.0% vs 37.2%, P = .020) and longer time to response (11.1 vs 8.4 months) than patients with CXCR4WTtreated with BTKis. CXCR4NSwas associated with inferior progression-free survival (PFS; hazard ratio [HR], 3.39; P = .017) in patients treated with ibrutinib but not in those treated with zanubrutinib (HR, 0.67; P = .598), but VGPR + CR rates were similar between treatment groups (14.3% vs 15.4%). Compared with ibrutinib, patients with CXCR4NStreated with zanubrutinib had a favorable major response rate (MRR; 85.7% vs 53.8%; P = .09) and PFS (HR, 0.30; P = .093). In patients with TP53MUT, significantly lower MRRs were observed for patients treated with ibrutinib (63.6% vs 85.7%; P = .04) but not for those treated with zanubrutinib (80.8% vs 81.9%; P = .978). In TP53MUT, compared with ibrutinib, patients treated with zanubrutinib had higher VGPR and CR (34.6% vs 13.6%; P < .05), numerically improved MRR (80.8% vs 63.6%; P = .11), and longer PFS (not reached vs 44.2 months; HR, 0.66; P = .37). Collectively, patients with WM with CXCR4MUTor TP53MUThad worse prognosis compared with patients with WT alleles, and zanubrutinib led to better clinical outcomes

    A randomized, open-label, multicentre, phase 2/3 study to evaluate the safety and efficacy of lumiliximab in combination with fludarabine, cyclophosphamide and rituximab versus fludarabine, cyclophosphamide and rituximab alone in subjects with relapsed chronic lymphocytic leukaemia

    Get PDF
    corecore