186 research outputs found

    Coulomb dissociation of 9Li and the rate of the 8Li(n,g)9Li reaction

    Full text link
    We calculate the Coulomb dissociation of 9Li on Pb and U targets at 28.5 MeV/A beam energy within a finite range distorted wave Born approximation formalism of the breakup reactions. Invoking the principle of detailed balance, these cross sections are used to determine the excitation function and subsequently the rate of the radiative capture reaction 8Li(n,g)9Li at astrophysical energies. Our method is free from the uncertainties associated with the multipole strength distributions of the 9Li nucleus. The rate of this reaction at a temperature of 10^9K is found to be about 2900 cm^3 mole^{-1} s^{-1}.Comment: 13 pages Revtex, 2 figures, title and abstract changed on referee's suggestions, figures modified and discussions extended, results remain the same; version to appear in Phys. Rev.

    Cosmic Strings in an Open Universe with Baryonic and Non-Baryonic Dark Matter

    Full text link
    We study the effects of cosmic strings on structure formation in open universes. We calculate the power spectrum of density perturbations for two class of models: one in which all the dark matter is non baryonic (CDM) and one in which it is all baryonic (BDM). Our results are compared to the 1 in 6 IRAS QDOT power spectrum. The best candidates are then used to estimate μ\mu, the energy per unit length of the string network. Some comments are made on mechanisms by which structures are formed in the two theories.Comment: uu-encoded compressed tar of postscript files, Imperial/TP/94-95/0

    Brans-Dicke model constrained from Big Bang nucleosynthesis and magnitude redshift relations of Supernovae

    Full text link
    The Brans-Dicke model with a variable cosmological term (BDΛBD\Lambda) has been investigated with use of the coupling constant of ω=104\omega=10^4. Parameters inherent in this model are constrained from comparison between Big Bang nucleosynthesis and the observed abundances. Furthermore, the magnitude redshift (mzm-z) relations are studied for BDΛBD\Lambda with and without another constant cosmological term in a flat universe. Observational data of Type Ia Supernovae are used in the redshift range of 0.01<z<20.01<z<2. It is found that our model with energy density of the constant cosmological term with the value of 0.7 can explain the SNIa observations, though the model parameters are insensitive to the mzm-z relation.Comment: Submitted to A&A, 4 pages, 3 figure

    Reconciling Present Neutrino Puzzles: Sterile Neutrinos as Mirror Neutrinos

    Full text link
    We suggest that recent neutrino puzzles that are the solar and atmospheric neutrino deficits as well as the possible neutrino oscillations reported by the LSND experiment and the possibility of massive neutrinos providing the hot component of the cosmological dark matter, can all be naturally explained by assuming existence of a mirror world described by an ``electroweak'' gauge symmetry [SU(2)×U(1)][SU(2)\times U(1)]', with the breaking scale larger by about factor of 30 than the scale of the standard SU(2)×U(1)SU(2)\times U(1) model. An interesting aspect of this model is that the sterile neutrinos arise from the hidden mirror sector of the theory and thus their lightness is more natural than in the usual neutrino mass scenarios. The needed pattern of the neutrino mass matrix in this model is obtained by assuming a conserved ZKM-type global lepton number Lˉ=Le+LμLτ\bar L=L_e+L_\mu-L_\tau, which is violated by Planck scale effects. One implication of our proposal is that bulk of the dark matter in the universe is a warm dark matter consisting of few KeV mass particles rather than the 100 GeV range particles of the currently popular cold dark matter scenarios.Comment: 10 pages, Latex, no figure

    The Supernova Relic Neutrino Background

    Full text link
    An upper bound to the supernova relic neutrino background from all past Type II supernovae is obtained using observations of the Universal metal enrichment history. We show that an unambiguous detection of these relic neutrinos by the Super-Kamiokande detector is unlikely. We also analyze the event rate in the Sudbury Neutrino Observatory (where coincident neutrons from anti-nu_e + D --> n + n + e+ might enhance background rejection), and arrive at the same conclusion. If the relic neutrino flux should be observed to exceed our upper bound and if the observations of the metal enrichment history (for z<1) are not in considerable error, then either the Type II supernova rate does not track the metal enrichment history or some mechanism may be responsible for transforming anti-nu_{mu,tau} --> anti-nu_e.Comment: Matches version accepted for publication in Phys. Rev.

    Big Bang Nucleosynthesis with Gaussian Inhomogeneous Neutrino Degeneracy

    Full text link
    We consider the effect of inhomogeneous neutrino degeneracy on Big Bang nucleosynthesis for the case where the distribution of neutrino chemical potentials is given by a Gaussian. The chemical potential fluctuations are taken to be isocurvature, so that only inhomogeneities in the electron chemical potential are relevant. Then the final element abundances are a function only of the baryon-photon ratio η\eta, the effective number of additional neutrinos ΔNν\Delta N_\nu, the mean electron neutrino degeneracy parameter ξˉ\bar \xi, and the rms fluctuation of the degeneracy parameter, σξ\sigma_\xi. We find that for fixed η\eta, ΔNν\Delta N_\nu, and ξˉ\bar \xi, the abundances of helium-4, deuterium, and lithium-7 are, in general, increasing functions of σξ\sigma_\xi. Hence, the effect of adding a Gaussian distribution for the electron neutrino degeneracy parameter is to decrease the allowed range for η\eta. We show that this result can be generalized to a wide variety of distributions for ξ\xi.Comment: 9 pages, 3 figures, added discussion of neutrino oscillations, altered presentation of figure

    Galactic chemical evolution of heavy elements: from Barium to Europium

    Get PDF
    We follow the chemical evolution of the Galaxy for elements from Ba to Eu, using an evolutionary model suitable to reproduce a large set of Galactic (local and non local) and extragalactic constraints. Input stellar yields for neutron-rich nuclei have been separated into their s-process and r-process components. The production of s-process elements in thermally pulsing asymptotic giant branch stars of low mass proceeds from the combined operation of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases neutrons in radiative conditions during the interpulse phase, and the reaction 22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The resulting s-process distribution is strongly dependent on the stellar metallicity. For the standard model discussed in this paper, it shows a sharp production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process yields, we assume that the production of r-nuclei is a primary process occurring in stars near the lowest mass limit for Type II supernova progenitors. The r-contribution to each nucleus is computed as the difference between its solar abundance and its s-contribution given by the Galactic chemical evolution model at the epoch of the solar system formation. We compare our results with spectroscopic abundances of elements from Ba to Eu at various metallicities (mainly from F and G stars) showing that the observed trends can be understood in the light of the present knowledge of neutron capture nucleosynthesis. Finally, we discuss a number of emerging features that deserve further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap

    Neutrino Lasing in the Sun

    Get PDF
    Applying the phenomenon of neutrino lasing in the solar interior, we show how the rate for the generic neutrino decay process `\nu -> fermion + boson', can in principal be enhanced by many orders of magnitude over its normal decay rate. Such a large enhancement could be of import to neutrino-decay models invoked in response to the apparent deficit of electron neutrinos observed from the sun. The significance of this result to such models depends on the specific form of the neutrino decay, and the particle model within which it is embedded.Comment: 12 pages, using ordinary TeX. No figure

    Disappearing Dark Matter in Brane World Cosmology: New Limits on Noncompact Extra Dimensions

    Full text link
    We explore cosmological implications of dark matter as massive particles trapped on a brane embedded in a Randall-Sundrum noncompact higher dimension AdS5AdS_5 space. It is an unavoidable consequence of this cosmology that massive particles are metastable and can disappear into the bulk dimension. Here, we show that a massive dark matter particle (e.g. the lightest supersymmetric particle) is likely to have the shortest lifetime for disappearing into the bulk. We examine cosmological constraints on this new paradigm and show that disappearing dark matter is consistent (at the 95% confidence level) with all cosmological constraints, i.e. present observations of Type Ia supernovae at the highest redshift, trends in the mass-to-light ratios of galaxy clusters with redshift, the fraction of X-ray emitting gas in rich clusters, and the spectrum of power fluctuations in the cosmic microwave background. A best 2σ2 \sigma concordance region is identified corresponding to a mean lifetime for dark matter disappearance of 15Γ18015 \le \Gamma^{-1} \le 80 Gyr. The implication of these results for brane-world physics is discussed.Comment: 7 pages, 7 figures, new cosmological constraints added, accepted for publication in PR

    Inhomogeneous Big Bang Nucleosynthesis and Mutual Ion Diffusion

    Full text link
    We present a study of inhomogeneous big bang nucleosynthesis with emphasis on transport phenomena. We combine a hydrodynamic treatment to a nuclear reaction network and compute the light element abundances for a range of inhomogeneity parameters. We find that shortly after annihilation of electron-positron pairs, Thomson scattering on background photons prevents the diffusion of the remaining electrons. Protons and multiply charged ions then tend to diffuse into opposite directions so that no net charge is carried. Ions with Z>1 get enriched in the overdense regions, while protons diffuse out into regions of lower density. This leads to a second burst of nucleosynthesis in the overdense regions at T<20 keV, leading to enhanched destruction of deuterium and lithium. We find a region in the parameter space at 2.1E-10<eta<5.2E-10 where constraints 7Li/H<10^{-9.7} and D/H<10^{-4.4} are satisfied simultaneously.Comment: 9 pages, minor changes to match the PRD versio
    corecore