54 research outputs found

    An Artificially Lattice Mismatched Graphene/Metal Interface: Graphene/Ni/Ir(111)

    Get PDF
    We report the structural and electronic properties of an artificial graphene/Ni(111) system obtained by the intercalation of a monoatomic layer of Ni in graphene/Ir(111). Upon intercalation, Ni grows epitaxially on Ir(111), resulting in a lattice mismatched graphene/Ni system. By performing Scanning Tunneling Microscopy (STM) measurements and Density Functional Theory (DFT) calculations, we show that the intercalated Ni layer leads to a pronounced buckling of the graphene film. At the same time an enhanced interaction is measured by Angle-Resolved Photo-Emission Spectroscopy (ARPES), showing a clear transition from a nearly-undisturbed to a strongly-hybridized graphene π\pi-band. A comparison of the intercalation-like graphene system with flat graphene on bulk Ni(111), and mildly corrugated graphene on Ir(111), allows to disentangle the two key properties which lead to the observed increased interaction, namely lattice matching and electronic interaction. Although the latter determines the strength of the hybridization, we find an important influence of the local carbon configuration resulting from the lattice mismatch.Comment: 9 pages, 3 figures, Accepted for publication in Phys. Rev.

    Interfacing CrOx and CuS for synergistically enhanced water oxidation catalysis

    Get PDF
    The sluggish kinetics associated with the oxygen evolution reaction (OER) limits the sustainability of fuel production and chemical synthesis. Developing catalysts based on Earth abundant elements with a reasonable strategy could solve the challenge. Here, we present a heterostructure built from CrOx and CuS whose interface gives rise to the advent of new functionalities in catalytic activity. Using X-ray photoelectron and absorption spectroscopies, we identified the multiple oxidation states and low coordination number of Cr metal in CrOx-CuS heterostructure. Benefitting from these features, CrOx-CuS generates oxygen gas through water splitting with a low over potential of 190 mV vs RHE at a current density of 10 mA cm− 2 . The catalyst shows no evident deactivation after a 36-hours operation in alkaline medium. The high catalytic activity, inspired by first principles calculations, and long-time durability make it one of the most effective OER electrocatalysts

    Highly Anisotropic Dirac Cones in Epitaxial Graphene Modulated by an Island Superlattice

    Get PDF
    We present a new method to engineer the charge carrier mobility and its directional asymmetry in epitaxial graphene by using metal cluster superlattices self-assembled onto the moiré pattern formed by graphene on Ir(111). Angle-resolved photoemission spectroscopy reveals threefold symmetry in the band structure associated with strong renormalization of the electron group velocity close to the Dirac point giving rise to highly anisotropic Dirac cones. We further find that the cluster superlattice also affects the spectral-weight distribution of the carbon bands as well as the electronic gaps between graphene states

    Electronic band structure of three-dimensional topological insulators with different stoichiometry composition

    Get PDF
    We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, AIVBi4Te7−xSex (AIV= Sn, Pb;x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.The authors acknowledge financial support from the Saint Petersburg State University (Grant No. 40990069), the Tomsk State University competitiveness improvement program (Grant No. 8.1.01.2018), the Fundamental Research Program of the State Academies of Sciences (line of research III.23.2.9), and the project EUROFEL-ROADMAP ESFRI. This work was also partly supported by the Italian Ministry of Education, Universities and Research (MIUR) through project PON03PE_00092_1 (EOMAT) and by the Science Development Foundation under the President of the Republic of Azerbaijan (Grant No. EIF/MQM/Elm-Tehsil-1-2016- 1(26)-71/01/4-M-33). S.V.E. acknowledges support from the Russian Science Foundation (Grant No. 18-12-00169) for part of the electronic band structure calculations.Peer reviewe

    Effect of the valence state on the band magnetocrystalline anisotropy in two-dimensional rare-earth/noble-metal compounds

    Get PDF
    [EN] In intermetallic compounds with zero orbital momentum (L = 0) the magnetic anisotropy and the electronic band structure are interconnected. Here, we investigate this connection in divalent Eu and trivalent Gd intermetallic compounds. We find by x-ray magnetic circular dichroism an out-of-plane easy magnetization axis in two-dimensional atom-thick EuAu2. Angle-resolved photoemission spectroscopy and density-functional theory prove that this is due to strong f-d band hybridization and Eu2+ valence. In contrast, the easy in-plane magnetization of the structurally equivalent GdAu2 is ruled by spin-orbit-split d bands, notably Weyl nodal lines, occupied in the Gd3+ state. Regardless of the L value, we predict a similar itinerant electron contribution to the anisotropy of analogous compounds.Discussions with the late J. I. Cerda are warmly thanked. Financial support from Spanish Ministerio deCiencia e Innovacion (projects MAT-2017-88374-P, PID2020-116093RB-C44 and PID2019-103910GB-I00 funded by MCIN/AEI/10.13039/501100011033/) , the Basque Govern-ment (Grants No. IT-1255-19 and No. IT1260-19) , and the University of the Basque Country UPV/EHU (Grant No. GIU18/138) is acknowledged. L.F. acknowledges funding from the European Union's Horizon 2020 research and in-novation programme through the Marie Skodowska-Curie Grant Agreement MagicFACE No. 797109. We acknowl-edge SOLEIL for provision of synchrotron radiation facilities at CASSIOPEE beamline under proposal 20181362. The XMCD experiments were performed at BOREAS beamline at ALBA Synchrotron with the collaboration of ALBA staff. Computational resources were provided by DIPC

    Correction: Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds

    Get PDF
    Correction for 'Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds' by L. Fernandez et al., Nanoscale, 2020, 12, 22258–22267, DOI: 10.1039/D0NR04964F
    • …
    corecore