96 research outputs found

    Electron-lattice kinetics of metals heated by ultrashort laser pulses

    Get PDF
    We propose a kinetic model of transient nonequilibrium phenomena in metals exposed to ultrashort laser pulses when heated electrons affect the lattice through direct electron-phonon interaction. This model describes the destruction of a metal under intense laser pumping. We derive the system of equations for the metal, which consists of hot electrons and a cold lattice. Hot electrons are described with the help of the Boltzmann equation and equation of thermoconductivity. We use the equations of motion for lattice displacements with the electron force included. The lattice deformation is estimated immediately after the laser pulse up to the time of electron temperature relaxation. An estimate shows that the ablation regime can be achieved.Comment: 7 pages; Revtex. to appear in JETP 88, #1 (1999

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    The XENON100 Dark Matter Experiment

    Full text link
    The XENON100 dark matter experiment uses liquid xenon (LXe) in a time projection chamber (TPC) to search for Xe nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper we present a detailed description of the detector design and present performance results, as established during the commissioning phase and during the first science runs. The active target of XENON100 contains 62 kg of LXe, surrounded by an LXe veto of 99 kg, both instrumented with photomultiplier tubes (PMTs) operating inside the liquid or in Xe gas. The LXe target and veto are contained in a low-radioactivity stainless steel vessel, embedded in a passive radiation shield. The experiment is installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and has recently published results from a 100 live-days dark matter search. The ultimate design goal of XENON100 is to achieve a spin-independent WIMP-nucleon scattering cross section sensitivity of \sigma = 2x10^-45 cm^2 for a 100 GeV/c^2 WIMP.Comment: 23 pages, 27 figures; version accepted by journa

    Probing ultrafast biological processes by picosecond spectroscopy.

    Get PDF
    A brief discussion of the initial events leading to the visual transduction process will be presented to illustrate the capabilities of picosecond spectroscopy

    PICOSECOND ABSORPTION SPECTROSCOPY

    No full text
    Author Institution: Bell Laboratorie

    Correlation of optical activity and nonlinear polarizability

    No full text
    This paper describes recent experiments in which optical sum frequency generation has been observed in liquids. The mechanism of coherent optical sum frequency generation in systems of randomly oriented molecules is closely related to that of optical activity, and the symmetry selection rules for the two processes are the same. The effect is observed experimentally in d- and l-optical isomers, for example, but vanishes in a racemic mixture. Details of the measurement of the nonlinear polarizability of optically active liquids are presented. The mechanism of sum frequency generation is explained in terms of the one-electron and the coupled-oscillator models of optical activity, and it is proposed that the ratio of the nonlinear polarizability to the optical rotatory power provides information in assessing the relative role of the two models

    MATRIX STUDIES OF LARGE MOLECULE DYNAMICS: EFFECT OF METHYL SUBSTITUTION UPON VIBRATIONAL RELAXATION

    No full text
    Author Institution: AT\&T Bell LaboratoriesThe absorption, laser excitation, and resolved fluorescence spectra of 9-Hydroxyphenalenone and of its methyl-substituted derivatives in solid neon are reported. Analysis of the spectra yields detailed information about the potential function and proton tunnelling both in the S0S_{0} ground state and in the S1S_{1} excited state. Studies of vibrationally unrelaxed fluorescence yield new insights into the rates and mechanisms of vibrational relaxation and energy redistribution. The methyl substitution is found to increase the relaxation rates by at least an order of magnitude. This is interpreted by the presence of a nearly freely rotating CH3CH_{3} group and attributed to a VRV \rightarrow R type process
    corecore