446 research outputs found

    Hamiltonian, Path Integral and BRST Formulations of Large N Scalar QCD2QCD_{2} on the Light-Front and Spontaneous Symmetry Breaking

    Full text link
    Recently Grinstein, Jora, and Polosa have studied a theory of large-NN scalar quantum chromodynamics in one-space one-time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of SU(N)SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge-invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front 't Hooft gauge.Comment: Accepted for publication in Eur. Phys. J.

    Pluripotent and Multipotent Stem Cells Display Distinct Hypoxic miRNA Expression Profiles

    Get PDF
    MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs. We found coordinate regulation of precursor and mature miRNAs under hypoxia suggesting their regulation mainly at transcriptional level. Hypoxia response elements were located upstream of 97% of upregulated hypoxia regulated miRNAs (HRMs) suggesting hypoxia-inducible-factor (HIF) driven transcription. HIF binding to the candidate cis-elements of specific miRNAs under hypoxia was confirmed by Chromatin immunoprecipitation coupled with qPCR. Role analysis of a subset of upregulated HRMs identified linkage to reported inhibition of differentiation while a downregulated subset of HRMs had a putative role in the promotion of differentiation. MiRNA-target prediction correlation with published hypoxic hESC and hMSC gene expression profiles revealed HRM target genes enriched in the cytokine:cytokine receptor, HIF signalling and pathways in cancer. Overall, our study reveals, novel and distinct hypoxia-driven miRNA signatures in hESCs and hMSCs with the potential for application in optimised culture and differentiation models for both therapeutic application and improved understanding of stem cell biology

    The upper limit of the e+e- partial width of X(3872)

    Full text link
    The e+e- decay partial width of the recently observed state, X(3872), is estimated using the ISR data collected at the center of mass energy 4.03 GeV in e+e- annihilation experiment by BES at BEPC. It is found that the product of the e+e- partial width and X(3872) --> pi+ pi- J/psi decay branching fraction is less than 10 eV at 90 % confidence level if the J(PC) of X(3872) is 1(--). Together with the potential models and other information, we conclude that X(3872) is very unlikely to be a vector state.Comment: 5 pages, 1 figur

    Chiral Bosons Through Linear Constraints

    Get PDF
    We study in detail the quantization of a model which apparently describes chiral bosons. The model is based on the idea that the chiral condition could be implemented through a linear constraint. We show that the space of states is of indefinite metric. We cure this disease by introducing ghost fields in such a way that a BRST symmetry is generated. A quartet algebra is seen to emerge. The quartet mechanism, then, forces all physical states, but the vacuum, to have zero norm.Comment: 9 page

    Chiral bosons and improper constraints

    Get PDF
    We argue that a consistent quantization of the Floreanini-Jackiw model, as a constrained system, should start by recognizing the improper nature of the constraints. Then each boundary conditon defines a problem which must be treated sparately. The model is settled on a compact domain which allows for a discrete formulation of the dynamics; thus, avoiding the mixing of local with collective coordinates. For periodic boundary conditions the model turns out to be a gauge theory whose gauge invariant sector contains only chiral excitations. For antiperiodoc boundary conditions, the mode is a second-class theory where the excitations are also chiral. In both cases, the equal-time algebra of the quantum energy-momentum densities is a Virasoro algebra. The Poincar\'e symmetry holds for the finite as well as for the infinite domain.Comment: 13 pages, Revtex file, IF.UFRGS Preprin

    Microrheology of wormlike micellar fluids from the diffusion of colloidal probes

    Get PDF
    The microrheology of cationic micellar solutions has been investigated as a function of added organic salts using quasielastic light scattering (QELS). Two organic salts, sodium p-toluene sulfonate and sodium salicylate, were used to induce microstructural changes in cetyl trimethylammonium bromide (CTAB) micelles. The mean-squared displacement (MSD) of polystyrene probe particles embedded in CTAB micellar solutions was monitored by QELS in the single-scattering regime. Through the use of the generalized Stokes-Einstein relationship, the frequency-dependent complex shear moduli of each fluid were estimated from the Laplace transform of the corresponding MSD. The salt-induced transition from nearly spherical to elongated wormlike micelles and consequent changes in fluid response from viscous to viscoelastic are clearly captured by microrheology

    Spin Ordering in LaOFeAs and Its Suppression in Superconductor LaO0.89F0.11FeAs Probed by M\"ossbauer Spectroscopy

    Full text link
    The 57Fe M\"ossbauer spectroscopy was applied to an iron-based layered superconductor LaO0.89F0.11FeAs with a transition temperature of 26 K and its parent material LaOFeAs. Throughout the temperature range from 4.2 to 298 K, a singlet spectrum with no magnetic splitting was observed as a main component of each M\"ossbauer spectrum of the F-doped superconductor. No additional internal magnetic field was observed for the spectrum measured at 4.2 K under a magnetic field of 7 T. On the other hand, the parent LaOFeAs shows a magnetic transition at around 140 K, and this temperature is slightly lower than that of a structural phase transition from tetragonal to orthorhombic phase, which accompanies the resistivity anomaly at around 150 K. The magnetic moment is estimated to be ~0.35 ÎĽ\muB/Fe at 4.2 K in the orthorhombic phase, and the spin disorder remains in the magnetic ordered state even at 4.2 K. The fact that no magnetic transition in LaO0.89F0.11FeAs was observed even at 4.2 K under 7 T implies a strong spin fluctuation above Tc or small magnetic moment in this system. Therefore, the present results show that the F-doping effectively suppresses the magnetic and structural transitions in the parent material and the suppression leads to emergence of superconductivity in this system.Comment: 13 pages, 4 figure
    • …
    corecore