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Chiral bosons and improper constraints
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We argue that a consistent quantization of the Floreanini-Jackiw model, as a constrained system,
should start by recognizing the improper nature of the constraints. Then, each boundary condition
defines a problem which must be treated separately. The model is settled on a compact domain
which allows for a discrete formulation of the dynamics; thus, avoiding the mixing of local with
collective coordinates. For periodic boundary conditions the model turns out to be a gauge theory
whose gauge invariant sector contains only chiral excitations. For antiperiodic boundary conditions,
the model is a second-class theory where the excitations are also chiral. In both cases, the equal-time
algebra of the quantum energy-momentum densities is a Virasoro algebra. The Poincare symmetry
holds for the finite as well as for the infinite domain.

PACS number(s): 11.30.gc, 11.10.Ef, 11.30.Ly

Self dual Gelds, also known as chiral bosons, are of
interest due to their relevance in the heterotic string [1]
and in the quantum Hall effect [2]. The quantization
of these objects is beset with difBculties. Indeed, the
Lorentz invariant model in Refs. [3,4], based on the idea
that the chiral condition could be implemented through
a linear constraint, does not exhibit physical excitations
[5]. On the other hand, the canonical quantization of
Siegel's Lagrangian [6] is afHicted by an anomaly which
is to be eliminated by the addition of a Wess-Zumino
term. It turns out, then, that the resulting theory does
not describe pure chiral bosons but rather their coupling
to gravity [7].

Of particular interest is the (1+1)-dimensional model
put forward by Floreanini and Jackiw (FJ) [8,9], whose
dynamics is described by the noncovariant Lagrangian
density
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where z = (z, z ) and P = P(z) is a real scalar field
whose canonically conjugate momentum will be denoted
as vr(z). This model was quantized through the Dirac-
brackets procedure [10] by one of us (H.O.G.) in collabo-
ration with Costa [11,12]. It possesses a nondenumerable
set of constraints,

1
p(z', z') —= 7r(z', z') — Biiti(z', —z') = 0,

2
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while the canonical Hamiltonian is H,
2 f dz (Big)(Big). One readily verifies that the Pois-
son brackets of the constraints define a matrix Q whose
inverse is not unique:
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Here, e(xi) denotes the sign function. In Ref. [11] the
arbitrary function ( was set to zero. By abstracting the
equal-time commutators from the corresponding Dirac
brackets (Dirac-brackets quantization procedure) the ba-
sic equal-time commutation relations were then found
[11]. In particular, we quote

[&(z') &(W')] = —2e(z' —~') (4)

where the carets denote operators. One can check that
the chiral Geld conGguration

P(z, z') = dk' [A(k') e '" C* +* l

2vr 0 k'

+At(kl) ik (2: +x )] (5)

with A(k ) and At(ki) destruction and creation opera-
tors, respectively, solves the Heisenberg equation of mo-
tion arising &om H and the equal-time commutation
relation (4).

The presence of the arbitrary function ( in (3) indicates
that the solution (5) is not unique [13] and, therefore,
cast doubts on whether all physical excitations of the FJ
model are in fact chiral. To elucidate this point is the
main purpose of this work.

We start by recognizing that the constraints p are im-
proper [14—16). Indeed, from (2) it follows that

bp[il] = dz' il(z')b7r(z') + Oirj(z')hP(z') —
~

2

1——[il(oo) bP(oo) — rI( —oo) hg( —oo)],
2

where il(z ) is any function in the space dual to the space
of constraints p(z ) and p[rI]—:f+ dziil(zi)p(zi). The
presence of the surface term in (6) confirms the im-

proper nature of the constraints (2). In order for the
total Hamiltonian [10] to be a proper generator of time
transformations, one must require the vanishing of this
surface term. Hence, the construction of the dual space
depends on the boundary conditions of hP(z }. For in-
stance, bP(oo) = hP( —oo) demands g(oo) = g(—oo),
while 6$(oo) = —hg( —oo) demands g(oo) = —q( —oo).

Thus, each set of histories fP(z) j verifying a certain
boundary condition deGnes a problem which must be
treated separately. In this work the FJ model is set-
tled on a compact domain (

—R & x & +B) and then
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is invariant under the transformation

&(*' '):4( '*')+ f(*'), (8)

quantized under periodic and antiperiodic boundary con-
ditions. As we shall see, to each boundary condition cor-
responds a difFerent constraint structure; in particular,
only periodic boundary conditions allow for first-class
constraints. The quantum energy-momentum densities
are constructed and their equal-time algebra is investi-
gated. A set of Poincare charges is built and the limit
R —+ oo is analyzed in both cases.

I et (P(z, z ) l P(z, +R) = P(z, —R)j be the set of
periodic histories and let P(zP, zi) be any history in this
set. One readily verifies that, in this case, the action

IIP = ) (u„(az + b„)
n&0

(12)

Here, sr„= nor jR whereas p and pi, are the momenta
canonically conjugate to a„and b„, respectively. It is
easy to see that there are no secondary constraints. The
first-class constraint p, —0 is the discrete counterpart of
(9). It generates gauge transformations that only affect
ap, i.e., the collective part of $(zP, zi). All phase-space
coordinates for n &.0 are, then, gauge invariant quan-
tities. However, unlike the continuous case, the gauge
freedom can now be suppressed by means of a subsidiary
condition and the system quantized, afterward, via the
Dirac-brackets procedure. Without losing generality we
assume for the gauge fixing condition the functional form:
ap+((a, b„,p „,ps„) —0. For the n & 0 sector the basic
nonvanishing commutator turns out to be

which preserves the boundary conditions [14]. This trans
formation, which is neither local nor global, must be
generated by a first-class constraint. Such a generator,
I'(zP), is an infinite combination of the constraints (2)
and reads

+R
I'(z ) = dz'tr(z, z') =0.

—R
(9)

&(z' z') = ao(z')
2R

) a„(z') +i b„(zP)'"-)p I.
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Of course, the invariance of the action under the trans-
formation (8) is responsible for the lack of uniqueness
present in (3). This "gauge freedom" cannot be fixed by
means of local gauge conditions. Alternatively, one may
try fixing by means of an integrated condition. When
quantizing the theory along these lines one faces the prob-
lem of computing Dirac brackets in which local field vari-
ables are mixed with collective ones [17].

To free ourselves from the above drawbacks, we shall
quantize the FJ model by taking advantage of the com-

pactness of the domain. This, together with the bound-

ary conditions under analysis, allows for a discrete for-
mulation of the theory in terms of the real Fourier coef-
ficients ap(zP), a„(zP) and b„(z ) entering in the decom-
position of the real field P [18]:

[an ~ pa ] = '4,m . (13)

As far as the commutators involving ap and/or p, are
concerned, we mention that they can be explicitly com-
puted only after specifying the gauge function ( . The
Hamiltonian H, can be promoted to the quantum level
straightforwardly because is not afHicted by ordering am-
biguities. Then, the solving of the Heisenberg equa-
tions of motion for the independent phase-space variables
yields

a„(z)= A„e '" + Ate'" . (14)
24)~ 24)~

p i)

implying that

2R
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(ol j(z', z')lo) = —2R(olj(0)lo) g o, (16)

The operators A„and At are destruction and creation
operators, respectively. Thus, the space of states is of
positive definite norm although the vacuum (lo)) is not
unique. Indeed, (10) can be cast as

r+ =—J. + "b„=0,2R "

2R
a 0,

(11a)

(11b)

while the canonical Hamiltonian H reads

where n E Z. By starting from (1) and (10) and go-
ing through the usual canonical analysis [10] one finds
that the system possesses a primary 6rst-class constraint
p, —0, a set of primary second-class constraints (n & 0)

where we have used A„lo) = 0 and the fact that all vacua
are translationally invariant.

The collective mode in (15) is neither gauge invari-
ant nor chiral and is responsible, as just observed, for
the spontaneous breaking of the continuous symmetry

/+const [see (1)]. That this remains true at
the limit B —+ oo follows &om purely dimensional ar-
g»~ents. Nevertheless, a gauge invariant field operator
(4) with vanishing vacuum expectation value can be nat-
urally built within the discretized formulation:

~( ' *') = &(*' *') + 2R (17)
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Clearly, the field 4 only describes chiral excitations. Fur-
thermore, it obeys the equal-time commutation relation

[C'(z' *') ~(z' y')]

there is only one commutator of interest, namely,
[0 (x, x ), 0 (z, yi)]. After some calculations one
arrives at

[000( 0 i) p00( 0 i)]

{-.-) -
=- j Iis)

We investigate next the limit 8 —+ oo for the results
obtained within the discrete approach. In particular, the
right-hand sides of (17) and (18) go, respectively, to

where

p00 0 1 + p00 0 1 g g 1 1

(23)

C'(z, z') = dk A(k ) e '" l +
2m 0+ ki

+At(kl) ik'( +z') (19)

[i(zO, z'), o(*',y')] = --.(*' —y'), (2O)

where the linear momentum variable ki is the continu-
ous version of the discrete variable nm/R, while A(ki)
and At(ki) are the limiting forms of the corresponding
discrete destruction and creation operators. Then, the
gauge invariant Geld 4 remains chiral at the continuous
limit and, moreover, (19) and (20) agree with (5) and

(4), respectively. Hence, what was done in Ref. [11] by
choosing arbitrarily ( = 0, amounts to isolate, within
the continuous &amework, the gauge invariant piece of
the operator P.

As for the Poincare invariance of the present formula-
tion of the FJ model, we start by recalling that the clas-
sical energy-momentum tensor (0""), arising from the
noncovariant Lagrangian density (1), satisfies 8„0""= 0
but is not symmetric. In fact, one finds that

0 = —0 ' = 0 = —(ctig)(Big),
2

o-" = —(~0&)(~04) —(&0&) (&i&).
2

(21a)

(21b)

000 00i Pio 011 . (g @)(g Ci)
2

(22)

The normal ordering prescription introduced in (22) se-

cures that {0~0~"~0) = 0. We emphasize that the sym-

metric character of O~ is a consequence of the chiral
nature of 4.

The next step consists in investigating the equal-
time commutation relations verified by the quan-
tum energy-momentum densities. In view of (22),

The classical components of the energy-momentum ten-
sor serve as a clue for establishing the form of the quan-
tum densities 0"" in terms of the basic fields [19]. A

gauge invariant and symmetric quantum energy momen-
tum tensor can be constructed by formally replacing P
by 4 in (21):

Z (x', y') = a.', b(z' —y') + a.,~(x' —y') .
24m * 24B2

The algebra (23) is a Virasoro algebra, since the
additional piece in the right-hand side of (24)
[(z./24R2)8 ib(zi —yi)] is a trivial cocycle that can
be absorbed in a constant redefinition of the energy-
momentum tensor.

We now show that the charges arising &om P"" are
the generators of the Poincare symmetry. Indeed, by in-
tegrating both sides of (23) over the domain of the vari-
able y one obtains

[0 (z, z'), P ] = '8 0 (z, z'), (25)

[P M] = iPO, (26)

where M —= —x' P' + f dz'z' 000(zO, z') is the

Lorentz boosts generator and P = —P is the generator
of spatial translations. What we have in (26) is, pre-
cisely, the contracted Poincare algebra of Ref. [8]. This
concludes our study of the FJ model on a compact do-
main and under periodic boundary conditions.

We turn next into investigating the FJ model under
antiperiodic boundary conditions. In this case, the trans-
formation (8) is not allowed because it does not preserve
the boundary conditions [14]. Hence, the theory exhibits
no symmetry and, correspondingly, first-class constraints
should not arise. In other words, under antiperiodic
boundary conditions, the FJ model is a pure second-
class system whose excitations are all chiral. To check
that this is indeed the case, we go again into the discrete
formulation.

Instead of (10) we write, in the present case,

1

iti(z, x') = ) ([a„(z ) +ib„(x )] e "+~

)0
1

+ [a„{xO)-'b„(z')I ~
' -"-'* }. (27)

This time the canonical analysis reveals that all the con-
straints are, in fact, second class.

The system is quantized by using, once more, the
Dirac-brackets quantization procedure. We omit the de-

+& 1 "00 0where Po:— f &
dzipoo(zO, zi) is the generator of

translations in time. A subsequent z integration in (25),
including the factor x, gives
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a~ g(x +x )] (28)

where A and At are, for all values of n, destruction and
creation operators, respectively.

Therefore, the vacuum expectation value of P vanishes
implying that, for antiperiodic boundary conditions, the
vacuum is unique. We also remark that the chiral nature
of P survives the limit R -+ oo and that (4) is obeyed.

Since the field P is itself chiral, a symmetric quantum

tails and just mention that, this time, the quant»r» dy-
namics is solved by the 6eld operator

0 y 1 ~ ~ 1 —347 +g ( ++ )

R

energy-momentum tensor can be constructed by using
(22) with 4 replaced by gk As for periodic boundary con-
ditions, the equal-time algebra of densities is a Virasoro
algebra. Moreover, a set of charges can be constructed
which act as generators of the Poincare group.

To summarize, after recognizing the improper nature
of the constraints, we were able to perform a consistent
quantization of the FJ model as a constrained system. It
became clear that each boundary condition de6nes a dif-
ferent problem, mainly in connection with the symmetry
content of the theory: while the periodic case is a gauge
theory, the antiperiodic is not. In both cases the physical
excitations are all chiral.
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