142 research outputs found
Flexibility properties in Complex Analysis and Affine Algebraic Geometry
In the last decades affine algebraic varieties and Stein manifolds with big
(infinite-dimensional) automorphism groups have been intensively studied.
Several notions expressing that the automorphisms group is big have been
proposed. All of them imply that the manifold in question is an
Oka-Forstneri\v{c} manifold. This important notion has also recently merged
from the intensive studies around the homotopy principle in Complex Analysis.
This homotopy principle, which goes back to the 1930's, has had an enormous
impact on the development of the area of Several Complex Variables and the
number of its applications is constantly growing. In this overview article we
present 3 classes of properties: 1. density property, 2. flexibility 3.
Oka-Forstneri\v{c}. For each class we give the relevant definitions, its most
significant features and explain the known implications between all these
properties. Many difficult mathematical problems could be solved by applying
the developed theory, we indicate some of the most spectacular ones.Comment: thanks added, minor correction
Affine modifications and affine hypersurfaces with a very transitive automorphism group
We study a kind of modification of an affine domain which produces another
affine domain. First appeared in passing in the basic paper of O. Zariski
(1942), it was further considered by E.D. Davis (1967). The first named author
applied its geometric counterpart to construct contractible smooth affine
varieties non-isomorphic to Euclidean spaces. Here we provide certain
conditions which guarantee preservation of the topology under a modification.
As an application, we show that the group of biregular automorphisms of the
affine hypersurface given by the equation
where acts transitively on the
smooth part reg of for any We present examples of such
hypersurfaces diffeomorphic to Euclidean spaces.Comment: 39 Pages, LaTeX; a revised version with minor changes and correction
Role of Myotonic Dystrophy Protein Kinase (DMPK) in Glucose Homeostasis and Muscle Insulin Action
Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes
High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring
Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid
Holomorphic automorphisms of Danielewski surfaces II -- structure of the overshear group
We apply Nevanlinna theory for algebraic varieties to Danielewski surfaces
and investigate their group of holomorphic automorphisms. Our main result
states that the overshear group which is known to be dense in the identity
component of the holomorphic automorphism group, is a free amalgamated product.Comment: 24 page
Active wetting of epithelial tissues
Development, regeneration and cancer involve drastic transitions in tissue
morphology. In analogy with the behavior of inert fluids, some of these
transitions have been interpreted as wetting transitions. The validity and
scope of this analogy are unclear, however, because the active cellular forces
that drive tissue wetting have been neither measured nor theoretically
accounted for. Here we show that the transition between 2D epithelial
monolayers and 3D spheroidal aggregates can be understood as an active wetting
transition whose physics differs fundamentally from that of passive wetting
phenomena. By combining an active polar fluid model with measurements of
physical forces as a function of tissue size, contractility, cell-cell and
cell-substrate adhesion, and substrate stiffness, we show that the wetting
transition results from the competition between traction forces and contractile
intercellular stresses. This competition defines a new intrinsic lengthscale
that gives rise to a critical size for the wetting transition in tissues, a
striking feature that has no counterpart in classical wetting. Finally, we show
that active shape fluctuations are dynamically amplified during tissue
dewetting. Overall, we conclude that tissue spreading constitutes a prominent
example of active wetting --- a novel physical scenario that may explain
morphological transitions during tissue morphogenesis and tumor progression
Compton scattering beyond the impulse approximation
We treat the non-relativistic Compton scattering process in which an incoming
photon scatters from an N-electron many-body state to yield an outgoing photon
and a recoil electron, without invoking the commonly used frameworks of either
the impulse approximation (IA) or the independent particle model (IPM). An
expression for the associated triple differential scattering cross section is
obtained in terms of Dyson orbitals, which give the overlap amplitudes between
the N-electron initial state and the (N-1) electron singly ionized quantum
states of the target. We show how in the high energy transfer regime, one can
recover from our general formalism the standard IA based formula for the cross
section which involves the ground state electron momentum density (EMD) of the
initial state. Our formalism will permit the analysis and interpretation of
electronic transitions in correlated electron systems via inelastic x-ray
scattering (IXS) spectroscopy beyond the constraints of the IA and the IPM.Comment: 7 pages, 1 figur
Noncovalent Interactions of Hydrated DNA and RNA Mapped by 2D-IR Spectroscopy
Biomolecules couple to their aqueous environment through a variety of
noncovalent interactions. Local structures at the surface of DNA and RNA are
frequently determined by hydrogen bonds with water molecules, complemented by
non-specific electrostatic and many-body interactions. Structural fluctuations
of the water shell result in fluctuating Coulomb forces on polar and/or ionic
groups of the biomolecular structure and in a breaking and reformation of
hydrogen bonds. Two-dimensional infrared (2D-IR) spectroscopy of vibrational
modes of DNA and RNA gives insight into local hydration geometries, elementary
molecular dynamics, and the mechanisms behind them. In this chapter, recent
results from 2D-IR spectroscopy of native and artificial DNA and RNA are
presented, together with theoretical calculations of molecular couplings and
molecular dynamics simulations. Backbone vibrations of DNA and RNA are
established as sensitive noninvasive probes of the complex behavior of hydrated
helices. The results reveal the femtosecond fluctuation dynamics of the water
shell, the short-range character of Coulomb interactions, and the strength and
fluctuation amplitudes of interfacial electric fields.Comment: To appear as Chapter 8 of Springer Series in Optical Sciences:
Coherent Multidimensional Spectroscopy -- Editors: Cho, Minhaeng (Ed.), 201
- …