10,304 research outputs found

    Nonlinear screening and stopping power in two-dimensional electron gases

    Get PDF
    We have used density functional theory to study the nonlinear screening properties of a two-dimensional (2D) electron gas. In particular, we consider the screening of an external static point charge of magnitude Z as a function of the distance of the charge from the plane of the gas. The self-consistent screening potentials are then used to determine the 2D stopping power in the low velocity limit based on the momentum transfer cross-section. Calculations as a function of Z establish the limits of validity of linear and quadratic response theory calculations, and show that nonlinear screening theory already provides significant corrections in the case of protons. In contrast to the 3D situation, we find that the nonlinearly screened potential supports a bound state even in the high density limit. This behaviour is elucidated with the derivation of a high density screening theorem which proves that the screening charge can be calculated perturbatively in the high density limit for arbitrary dimensions. However, the theorem has particularly interesting implications in 2D where, contrary to expectations, we find that perturbation theory remains valid even when the perturbing potential supports bound states.Comment: 23 pages, 15 figures in RevTeX

    DEGREES OF FREEDOM IN THE CONTROL OF DISTILLATION COLUMNS, I. : GENERAL CONSIDERATIONS

    Get PDF

    Mixture Based Outlier Filtration

    Get PDF
    Success/failure of adaptive control algorithms – especially those designed using the Linear Quadratic Gaussian criterion – depends on the quality of the process data used for model identification. One of the most harmful types of process data corruptions are outliers, i.e. ‘wrong data’ lying far away from the range of real data. The presence of outliers in the data negatively affects an estimation of the dynamics of the system. This effect is magnified when the outliers are grouped into blocks. In this paper, we propose an algorithm for outlier detection and removal. It is based on modelling the corrupted data by a two-component probabilistic mixture. The first component of the mixture models uncorrupted process data, while the second models outliers. When the outlier component is detected to be active, a prediction from the uncorrupted data component is computed and used as a reconstruction of the observed data. The resulting reconstruction filter is compared to standard methods on simulated and real data. The filter exhibits excellent properties, especially in the case of blocks of outliers.

    Nonlinear screening in two-dimensional electron gases

    Get PDF
    We have performed self-consistent calculations of the nonlinear screening of a point charge Z in a two-dimensional electron gas using a density functional theory method. We find that the screened potential for a Z=1 charge supports a bound state even in the high density limit where one might expect perturbation theory to apply. To explain this behaviour, we prove a theorem to show that the results of linear response theory are in fact correct even though bound states exist.Comment: 4 pages, 4 figure

    Parametrization of semi-dynamical quantum reflection algebra

    Full text link
    We construct sets of structure matrices for the semi-dynamical reflection algebra, solving the Yang-Baxter type consistency equations extended by the action of an automorphism of the auxiliary space. These solutions are parametrized by dynamical conjugation matrices, Drinfel'd twist representations and quantum non-dynamical RR-matrices. They yield factorized forms for the monodromy matrices.Comment: LaTeX, 24 pages. Misprints corrected, comments added in Conclusion on construction of Hamiltonian

    Self-adjoint Lyapunov variables, temporal ordering and irreversible representations of Schroedinger evolution

    Full text link
    In non relativistic quantum mechanics time enters as a parameter in the Schroedinger equation. However, there are various situations where the need arises to view time as a dynamical variable. In this paper we consider the dynamical role of time through the construction of a Lyapunov variable - i.e., a self-adjoint quantum observable whose expectation value varies monotonically as time increases. It is shown, in a constructive way, that a certain class of models admit a Lyapunov variable and that the existence of a Lyapunov variable implies the existence of a transformation mapping the original quantum mechanical problem to an equivalent irreversible representation. In addition, it is proved that in the irreversible representation there exists a natural time ordering observable splitting the Hilbert space at each t>0 into past and future subspaces.Comment: Accepted for publication in JMP. Supercedes arXiv:0710.3604. Discussion expanded to include the case of Hamiltonians with an infinitely degenerate spectru

    Functional renormalization group with a compactly supported smooth regulator function

    Full text link
    The functional renormalization group equation with a compactly supported smooth (CSS) regulator function is considered. It is demonstrated that in an appropriate limit the CSS regulator recovers the optimized one and it has derivatives of all orders. The more generalized form of the CSS regulator is shown to reduce to all major type of regulator functions (exponential, power-law) in appropriate limits. The CSS regulator function is tested by studying the critical behavior of the bosonized two-dimensional quantum electrodynamics in the local potential approximation and the sine-Gordon scalar theory for d<2 dimensions beyond the local potential approximation. It is shown that a similar smoothing problem in nuclear physics has already been solved by introducing the so called Salamon-Vertse potential which can be related to the CSS regulator.Comment: JHEP style, 11 pages, 2 figures, proofs corrected, accepted for publication by JHE
    • 

    corecore