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I. Introduetion

I. 1 The present paper is a continuation of the first part of this series
(Dévai— Horvath—-—Juhasz-Nagy, 1971, quoted here in
brief as “P. 1.”), where a new type of diversity (“faunal diversity”) and
its trend of spatial change has been described with respect to the Cladocera
fauna (of 10 taxa) living in a fish-pond (located in the central part of the
Great Hungarian Plain). This text refers to the same object, basic con-
cepts, samp hn(r procedure, data ete. as P. 1. do. Thus an attempt will
be made to 1educe repetition to a minimum.

I. 2 Now we are here concerned with association, more correctly,
association among populations (“interlocal similarity” in our terms; cf.
P. I.: IV. 1). There is no need to enter here into details; many excel-
lent references are easily available (e. g. Goodall 1952; Andre-
wartha — Birch 1954; Dagnelie 1960, 1965, Greig —
Smith 1964; Kershaw 1964; Lambert— Dale 1964;
Pielou 1969, etc.). It is fairly well-known that the vast majority of
studies on association (in particular, in recent years) is motivated by the

problems of ordination of living communities. Much work has been done
m()stlv on sorting algorithmus based on mdependen(e both on mtexlocal
and interfloral (- f.umal) similarity relations (ef. Williams — Dale
1965; Macnaughton-Smith 1965; MecIntosh 1967;
Aleksandrova 1969; etc.). In spite of this — or perhaps because
of it — some rather important problems (being outside the realm of the
present-day ordination practice) seem to be virtually neglected. Consider
only two of them.

I. 2. 1 Our knowledge of association process in space (roughly, change
of association in space) is extremely limited. Greig — Smith’s
warning (1964, p. 105: ,,The effect of sampling size on indications of
association has been largely overlooked..”) is still apt to make. Clearly,
any statement of the sign, number or strength of association measures is
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related to a point (or an interval) of a spatial process, if only one definite
size of sampling units was used.

I. 2. 2 We know next to nothing about the spatial changes of partial
or multiple association measures among 3, 4,.. populations. Except a
very limited number of papers(e. g. Cole 1957: Juhdsz — N a gy
1967) almost all studies are concerned with pairwise association which
— one has the feeling — is somewhat “unnatural”. A rather “more na-
tural” measure would be total association of a faunal or floral universe
(cf.. P. L).

I. 3 Considerations such as those just mentioned suggest that it
would be useful to know something about the trend of spatial changes
of total association. This paper is aimed at showing a simple modeling
of such a problem.

Associatum is defined to be the total association of a faunal uni-
verse (faunal set of interest). By associatum process a spatial process (of
faunistic nature) is meant (by means of a discrete approximation), exel.
temporal and grouping processes. Associatum is expressed in terms of
information theory (more precisely, in terms of information sensu
Shannon). There is again no need to enter into details: the reader
can sonsult some excellent references (e.g. Williams — Lambert
1966; Pielou 1969; Orloci 1971; Dale 1971) and their biblio-
graphies.

I1. Modeling

11. 1 Let @y be a faunal universe (as a set universe of populations) of a
given object (Cladocera fauna of a pond, in this case), Qp = {g,. .. .,
es- - ¢s- ), Let, further,V be a class of sampling units (volumes), accord-
ing to an X ,increasing algorithm”, Vy = (V,, V,,..., 2 W—
where, in our case, V; is a set of sampling units of 21 ml. size, Vi = {oy,
Vig,- - Vi, - -, Uim}s w = 8 (the largest sampling size is 256 ml.) and m = 64
(all V set elements consits of 64 volumes of a given size randomized over
the surface of the pond).

Let us consider the Cartesian product of )y and Vi, Qex Vj, and a
binary relation, rj.,, called intersection, defined between each ordered
pair < Qe Vjg>,

B [l, if g Nvje = 0
10, if giNvg =0’

where g stands for the set of body points of qe. Let QX V; be trans-
formed into a U; binary contingency table (hy permitting summation
in marginals) so that

(IT; 1)

Tjog

m 8 m

2 Tiew = Tiels 3 Tieg = Nijg, 3 3 g = Nj, (I1; 2)
g=1

e=1 g=1 e=1

and let
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M — Vi1 = Tje0s $— Tjg = Tojg, Ms— Ny = n;, (I1; 3)

where the following terminology (cf. P. I. in detail) is adoj:ted:

rim (local valence) Mg (faunal valence)

rie0 (local invalence) rgj, (faunal invalence)

N; (total valence) n; (total invalence).

Let IIq be faunal power set of @, IIq = {7y, 7y, - ..., Ak . . ., Ay},

w = 25— 1, where 7y is a potential fauna (any subset of @), and let fjx
be the frequency of mx and Fj the frequency distribution of z’s in Uj.
Faunal diversity is characterized in P. I. by the function

. W
mH; = m log m— 3 fi log [k (I1; 4)
k=0
For the sake of convenience, let

> Jix log fix = Gj (II; 5)
> Tl log rja = 4; (I1; 6)
e=1
> rien l0g 10 = @ (T
e=]
> nijg log njg = By (IT; 8)
g1
m
> rojg log rojg = b (IT; 9)
g=1
‘Vj l()g Nj = C,l (II, ]”)
nj log nj = ¢; |
Aj + a5 = o '
Bj + by = B; (IT; 11)

The simple concepts and estimators above are preliminary ones to the
following reasoning.

11. 2 Association (“simple”, pairwise association) is interpreted bet-
ween pairs of local vectors of U; (cf. P. 1.) by a 2X 2 scheme, whose mole-
cular events are: (=11=, <=10=, <01=, <=00=). Comparing 3 local
vectors begins with attaching frequencies to molecular events (<111 =,
=110=, =101=,..., =000=). In the case if all the local vectors of
U; are to be compared, we have a 2X2X ... X2 table with 2° molecular
events representing all ordered s-tets possible (all subsets of @r). Let us
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call such a table K; with respect to U;. Frequency distribution of K;
clearly corresponds to F; (because events of K are equivalent with that
of I1q) and marginals of K; correspond to local valence and invalence sets
of U;. Thus a weighted estimate of associatum expressed as multipel
information has the form (¢f. Kullbac k, 1959):

mli[1] = G; — o + (s—1)m log m. (IT; 12)
With a slight change of quantities in (II; 12)

"Iij [2] = (sm log m —a;) — (m log m—0), (IX;5:18)
where
— the first term,

msl; (v, [q.1]) = sm log m — o, (IT; 14)

called local distinction, vequires some further considerations, and
— the second term corresponds to ))Ii}j of (I1; 4),
Jaunal diversity.
Thus, associatum (total association) is separable into two additive
components, meaningful in themselves:

mlI;[2] = msl; (v, lg, i])—ml},- (IT; 15)

IL. 3 Let us examine local distinction more closely. Such quantity as
m.s'fj(\'. [¢. 7]) is best interpreted as one related to preferential relations
(f. Quastler, 1953; Juhiasz — Na gy, 1964). The positions
of I's in U show how certain populations prefer certain volumes (of
J-size) to others, and vice versa, according to the attribute duality principle
of the Southampton group (cf. e. g&. Lambert — Dal e, 1964).
Preferential relations may he first approached by a conceptual triplet
(choice — selection — preference).

@) A random choice of an ordered pair in Uj is characterized by
(LL: 1)

b) Random selection (as a repetitive choice) of a particular object is
characterized by a corresponding pair of valence and invalence value.

¢) Preference (of some kind) is characterized by some function defi-
ned on the frequency distributions of valences and invalences.

Let us define three abstract partners in our selective situation, an
average population (q), an average samyling volume of a fixed size (v), and
an average intersection (i) related to that size. All partners are endowed
with selective property. Namely,

— ¢ selects volumes from the elements of Vi,
— v selects populations from the elements of Qr,
— i selects ordered pairs from the set of ms ordered pairs of a U;.

Let us call a “positive random choice” in (IL: 1) a coincidence (rjpq=1).
Assume a classical probability field (¢f. K hinech i n, 1957), equiproba-
bility of coincidences, i. e. p(g) = I/s, p(v) = 1/m, p(i) = 1/ms. Thus, in
terms of information theory, we have
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I

H(q) = logm '

I/l\j (7) = log ms— y; /m.s',]

some uncertainty measures of the Hartley tvpe, and further, for joint
entropy measures, we have

1/1\:‘ ([q.7]) = log m.s'—a:j/m.s]

1/1\,- ([v,4]) = log m.s-—ﬁ,-/m.s}

H ([¢q,v]) = logms I

J

(X3 17)

H ([q,v,7]) = logms

It is fairly easy to see that having (II; 16) and (1I; 17) a whole
system of information functions

Ii(q,9) = log s +aj [ms — y; [ms (IT; 18)
I (v, 9) = log m + B [ms— y;j [ms (IT; 19)
I;([q. v, 7] = logms—a; |ms— B [ms (IL; 20)

can be obtained, where each function has a definite bearing on a certain
aspect of preferential relations. Unfortunately, owing to a lack of space,
without referring to some important properties of these information
quantities, we must confine ourselves to our special function of (II; 14).

II1. 3.1 Now, from a formal point of view, this quantity can be
expressed either as multiple information of partner » with respect to the
joint finite scheme of the other partners, [¢, i].,

Iy (v, [q. 1) = H()— H, (0|[q. 7)) = H@)— H({g, v. i)+ H; ([q. 7)) =

= log m — log ms+ log ms —oj [ms = log m — o [ms
or as conditional information of joint finite scheme [z, i] with respect
to partner q,

I;([v, 4)lg) = H([v.4]lg)— H; (v|[g,i]) — H(i|[g, v]) =
= log ms —log s —log ms +log ms —aj [ms — 0 = log m —a; [ms .

The equality (v, (¢, i]) = I;([v, i]|q), of course is, a consequence of
the equiprobability condition fo our model system. These two quantities
ought to have been different if basic assumptions were different.

I11. 3.2 Coming to a more interpretative view, let us consider first
the following additive relation:
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(1) m.s'fj (7,7) = mslog s+oj — y;
(2) +msl; (v, [q, 7)) =

3) msl; (4, [g,v]) =

ms log m — %

ms log ms — y;

21)

(1) in (1I: 21), being contingency information of a 2 x s table related to
U; of local \'alen(es and invalences, reflects upon the difference among
populatmns in their local preferences. On the one hand, if we deal with an
equiprobable local valence set (i.e.all local valence values of a U is
equal to Nj/s, local density), then I;(q,1) is zero, and T; (v, (¢, l]

of maximum value, fj (v, [g.3]) = I; (2, [q, v]). On the other hdlld if ]oml
valence set has an “unequal” frequency distribution of the highest
degree (i.e. Nj/m \'alues are equal to m, and the rest is zero), then I, (¢. i) =
=1; (i, [¢, v]), and T (v, [¢, i]) = 0. These boundary relations have different
l)earm«rs on a numbel ()f synbiological problems At the moment we are
interested here in the follownw intuitive meaning.

II. 4. IJOt
Jlf:’: {)'j“. Vi21y -+ «

}
_,[(\”: {'.Ijls 7j2y . - }
}

i (IT; 22
) N
mg’ = {rj10, 7j20, - - -
(i)
Hy = {I‘()“. roj2s - - }
called faunistic marginals (in brief, f-marginals) with respect to U/;. We

can think of f-marginals in p‘ms calling them local, faunal, \dlenc and
invalence marginals, resp. Valence marginals of U; can be characterized
l)v an ordered triplet of faunistic mean density values, —=
where

m, g ;J s J\'j = .

—mj is a mean local density, m; = Nj /s,
—sj is a mean faunal density, s = \, [m,

—Nj is a mean total density, N; = N ;/ms,

and where “faunistic density” means a “rate of scoring”, instead of
“number of individuals®
IL. 4.1 Let us define the following weighted entropy values (on the

f-marginals of Uj), referring to marginal uncertainties:

aQ

Ny H; (M) = C5 — A (IT; 23)
.\vj ]13(-”\) — ("J' =, RJI
nyHy (my) = ¢; — a5 | (IT; 24)
)Ijl/l\j (my) = ¢ — I)i J
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Functions of (1I; 23) are monotonously increasing, those of (II; 24) are
monotonously decreasing with increasing of sampling unit sizes. (We
believe that these functions are optimum substituents of “species area
funections” used so far.) The best property of these functions is that at
each V; they are bounded by the following inequalities:

Njlogs; = Nj i]\, (M,) = Njlogs

/)

Njlogm; = Nj 175 (M) = Njlogm

)

-~
njlog (s—5;) = nytlj(m,) = njlogs

N
njlog (m—my) = nyHj(my) = njlogm

where maxima are due to monovalence state (if the proper valence values
are all equal to one another, ..e. to the corresponding mean density), and
minima are due to oligovalence state (if a number of valence values reach
their maximum and others remain zero). This relation was already com-
mented upon in I11. 3.2.

I1I. 4.2 According to inequalities of (II; 25), either upper deviales,

max le/[\j(.ll.l) — Njﬁj(ﬂl.l) = A;\'jﬁj(‘ll‘,) = Njlogs—Cj + 4;,

N
A nyHy (mg) = njlogs—e; + a5,

AN H;(M,) = Nilogm—C; + B;, (IL; 26)
A ')1,-11/\,- (my) = mjlogim—cj + b;

or, lower deviales,
N; ﬁj (MM g) — min N il\,- (Mq) = VN ﬁj (My) = Njlogm— Ay,
v 7zjﬁj (mq) = njlogm —ay,
v N; H;(3L,) = N;logs—B;, (1L; 27)
v 72311/\] (my) = mjlogs—b;,

as empirical gain of information measures at Vj indicate how diverse
empirical f-marginals are. In a monovalence state, when there is no
marginal diversity, the proper upper deviates become zero. On the other
hand, in the same case, proper lower deviates have maximum value.
This shows that marginal diversity (sensu generali) should be estimated
from both extremities at the same time.

I11. 4.3 Now, it is rather easy to see that

AN I/{\, (M q) + Anj IIA, (mq) = mslogs+o; — y5 = msl; (¢, 1), (II; 28)

and
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VN Hj (M) + v ny Hy (mg) = mslogm—a; = msl; (u, [¢.7]) (1I; 29)

i.e. the pairwise sums of upper and lower deviates, resp. correspond to
the quantities in (1I; 21).

III. 4.4 This relation allows us to reformulate (II; 15) by parti-
tioning associatum into three diversity components

ml;[5] = '7‘\',-//1\,- (My)+ v"ji]\j (m.,)—mil\j, (1L; 30)

where the meaning of each component is interpretable and related to
a framework of concepts.

III. Hlustration and interpretation

HI. 1 Data. In our case, where (a) Qy, faunal universe is a set of 10
Cladocera taxa (s = 10) denoted as (A4, B,....K) inP. 1., (b) Iy is a set
of cubic shaped sampling units (m = 64) of 2; ml. size, (¢)j =1, 2,..,8
(v = 8), i. e. Iy is a series according to the increasing powers of 2, we
have 8 binary contingency tables (U;) of 10X 64 size whose zalence sels
are given by tables 1 and 2.

ITI. 1.1 Local valence sets are shown by the columns of table 1,

where double row symbols (as alternative notation) stand for the elements
of @y (cf. P. 1., II. 2)

Table 1.
= ] B —
Va vz V3 ‘ Vi ‘ Vs l Ve Ve Vs
A | q 6 1 ' a1 | a1 | a3 | 62 | s | 6a
s & | B al @l Bl 8l ol oo
¢ ‘qq% 5| 10| 2 51 I 55 62 | 64 | o4
D qa 7 1 1| 2| s | 6| 10 a2 | 6
. 1)) q; 1 —‘l- 3 12 ‘ TL 21: viﬁ 5()> ;47
o 9 21 39 571 | o4 | o4 | o4 | o2 | o4
e qa; s | 9| 1z 7|7 a1 | a2 60 | o4 7 64
H : g -T » 7;77‘ 24 7 17 27 6o i ; 64
B ‘q,, o | o o i —7«|‘- 1| oss | 64
K o | el 2| s 5| | 33 | o4
N | s | 1o | 1s2 | 286 | 326 | am ‘;F 610
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II1. 1.2 In table II. a variable y is introduced which has possible
ralues of faunal valences (p = 0, 1,..., 10). Thus, an entry, /j,, of the
first part of table 2 represents frequency of a given value of faunal va-
lences in Uj. Naturally, weighted frequencies of that sort sum up to total
valence,

8
2 I/’kj‘a’ . "\’i

w=0
as it is shown in the second part of table 2, where series of total valences,

N,<=N,<... <N, corresponds to that of table I.
Table 11.

Vi | Vo | Va| Vel Vs | Ve|Ve|Vs
\

p=0 lj 7 OV_()—_(Ti‘_E)_OQ_(‘) Yo | Ve L "4! V| Ve | Vi i_
1| 36 29 9 0 l\ o o o 36/ 29[ 9 o 1 o o o
2| 1f 16 17 20 20 o o o 22 32 34 4 4 0 0 O
3| of 8 21| 12/ 3 o o o o0 24 63 36/ o o o o
_ 4| o 4 ul ol iy 2| of of o 10 e e 6 4 o o
5 0 0 4| 15| 17 5 0 0 0 0 201‘ 75 85/ 25 0 0
o) o o o s o 3 o o of a4 onuss el o
7 0 0 0 5 9 23] 12 0 0 0 0| 35| 63] 161 84 0
- 8 0 0 0 0 1 6 15 0 0 0 0 0 8| 48] 120 0
9 0 0 0 0 0 5 15 0 0 0 0 0 0/ 45| 135 0
—10 o o o o o 1 19 64 0 0 0 0 0 10 190/ 640
64 64] G4] 64] 64] 64 64] 64] 58 101 182; 286| 326, 431| 547, 640

111. 1.3 Results based on data of tables I. and II. in relation to our
basic function (I; 15) is shown by table ITI. All quantities are given in
weighted nits (natural units), i. e. log. nat. was used.

We believe that at least “the qualitative trend” of these funtions
in table I11. are clear and interpretable. This view is supported by some
considerations presented below and by experience of one of us (P. .J-N.)
with respect to terrestrial communities; all functions studied so far are
similar to that of table III.

IIT. 2 Trends. Examining the trends of functions in table III., our
question is how change associatum in value with increasing size of sampl-
ling units.
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Table I11.
e = —
I m[,[z[ = m.vlj(r. [a, i) — ’"'}j
!
i=1 \ 20.30 158.26 137.96
2 ‘ 25.52 ‘ 198.54 173.02
3 | 50.35 | 252.58 202.23
4 } 30.23 | 207.63 177.40
5 47.62 | 241.69 194.07
(} 22.53 179.02 156.49
7 ' 16.50 162.44 145.94
S : 0.00 0.00 0.00
|

ITII. 2.1 Tt is observable that mfj[ ], j=1, 2, .. has two “peaks” such
that the first one (cca. at 8 ml.) is somewhat greater than the second one
(somewhere about 32 ml.). We believe that these two peaks correspond
two volume sizes characterized by “the dominance of negative and yposi-
tive association”, resp. We intend to show in a further part of this series
(or elsewhere) that this is the case. At the moment we confine our atten-
tion to the additive relation of table I11., i. e. to the components of asso-
ciatum.

I11. 2.2 We know already (from P. 1.) the trend of m#l; which func-
tion has maximum values (somewhere about 8 ml. and 32 ml.), called
mazimum volumes, V., where faunal diversity (with respect to Ilg) or
inpredicability of Fj is of the highest degree. V.. is contrasted with
minimum volume, V., where (at a size less than or equal tp 256 ml.)
there is no faunal diversity whatever and faunal predicability is perfect.

TII1. 2.3 Vyin of course, is a concep:t of general importance. It can
be said as axiomatic that all characteristic functions of faunistic nature
must reach zero value at Vi, (since all objects — faunas, loci, ete. — are
equivalent faunistically to one another): for instance, all information
functions of I1. 3 have this property. (Naturally, the phrase “characteris-
tic funetion™ is used here in a synbiological sense of the word, not to be
confounded with the well-known term of probability theory.) Vi and
Viin are characteristic volumes. For a more general definition we can put
forward the following one. A characteristic volume is defined by the
extreme values (maxima, minima) of some characteristic functions with
respect to the interval [V, V,]. We can quess that there are otherim-
portant characteristic volumes than V.. Viin.

Indeed, a new type of characteristic volume, called compensatory
volume, Veomp, is one, where Nj = nj = ms/2, i. e. where total valence
and invalence values (or, number of coincidences and incoincidences:
cf. II. 3) are — at least, approximately — equal to each other. In our case
Veomp is at Vi, where N = 326, incidentically quite close to ms/2 = 320.
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Clearly, Vomp need not be equal to V,,.(In terrestrial plant communities
for maximum area, A,,., and compensatory area, Agomp, the relation
Apax = Acomp is generally true.) Unfortunetely, our data are insufficient
to make such a distinction, if there is any. But we can infer even from our
“weak data” of table I1I. that a number of characteristic volumes (e. g.
maxima and minimwm of associatum) are more or less close in size to
Veomp- This is so as each characteristic function has a ,,rising part” (when
sampling units are “small”) and a “falling part” (toward Vi, Amin, etc.),
and, between these two, at an interval, a “part”, where one or several
characteristic volumes occur. We may call this interval a compensatory
interval.

I1I. 2.4 Function msfj(i.[(/.r]) in (LI; 21), for instance, has always a
unique maximum at V,,,, max ms fj(z',[q,r]) = ms log 2, because its
only variable, y;, has its own minimum, miny; = ms log ms—ms log 2, at
that size of volume. It is worth considering the two types of partition of
this quantity mentioned in 1I. 3.2 —.

ITI. 2.4.1 First, table IV. shows the double partition of ms/;(i,[¢,v])
in (II; 21).

Table IV.

i mxfj(i. la, €] iT umlj(q. i) 1[~ nmlj(\'. la, i)

T \

i=1 | 194888 36.626 158.262
2 ’ 279.396 80.856 198.540
3| 382444 129.865 252.579
4 440.335 232.703 207.632
5 | 443.842 202.149 241.693
6 | 404.639 225.621 179.018
7| 265.615 103.176 162.439
8 1 0.000 0.000 0.000

I1I. 2.4.2Second, table V. shows the quadruple partition of the same
quantity according to III. 4.3. Note that upper local deviates sum up to
msli(q,i), lower local deviates sum up to msl(v,[¢,i]), and the sum of the
four quantities involved is equal to the corresponding value of mslj(i,
[q.2])-

I1I. 2.5 Let us examine in brief table V. It is noteworthy that lower
deviates have common maxima (at V, and V) contrary to the different
trends of upper deviates. This is resulted in the difference between the
trends of mslj(¢,i) and msli(v,[¢,i]) in table IV. All quantities (all the
deviates of table V.) are some diversity measures but lower deviates show
how empirical marginal diversity differs from a minimum marginal
uncertainty.

4 ANNALES — Sectio Biologica — Tomus 15.
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Table V.

ANjH; L | angymg | vN; 0Ly | Vi (mg)

j=1 32.512 4.414 106.778 51.484
2 65.557 15.299 120.978 77.562

3 88.467 41.398 140.487 112.092

4 117.786 114.917 112.732 94.900

5 91.521 110.628 128.562 113.131

6 77.455 148.166 93.174 85.844

7 14.415 88.761 71.766 90.673

8 0.000 0.000 0.000 0.000

III. 3 We gratefully acknowledge the cordial help of staff people
at the computer station of the L. Kossuth Univ., Debrecen.

IV. Summary

Associatum is defined to be total association of a biotal universe.
Associatum (expressed here as total information of some kind) can be
partitioned into additive components (preference and diversity functions)
whose change in space (with increasing unit sizes of sampling) can he
related to associatum process in space.
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