
somi; problems of MODEL-HI ILDIN« in synbiolooy
P A HT 2

Associatum process in a simple situation

Bv

P. J U H Á S Z  - N A G  Y* - I .  D É V A  I** -  K . H  О В V Á T  H***
Dept, of PL Taxonom y and  Ecology o f the L. E ötvös U niversity , B udapest*;

H ydrological W orks, Debrecen**; A gricultural School, Debrecen***
Received on the 3 0 th, May, 1972

I. Introduction

I. 1 The present paper is a continuation of the first part of this series 
( D é v a i  — H o r v á t h  — J u h á s г - N a g у, 1971, quoted here in 
brief as “P. I.”), where a new type of diversity (“faunal diversity”) and 
its trend of spatial change has been described with respect to the Cladocera  
fauna (of 10 taxa) living in a fish-pond (located in the central part of the 
Great Hungarian Plain). This text refers to the same object, basic con­
cepts, sampling procedure, data etc. as P. I. do. Thus an attempt will 
be made to reduce repetition to a minimum.

1. 2 Now we are here concerned with association, more correctly, 
association among populations (“interlocal similarity” in our terms; cf. 
P. I.: IV. 1). There is no need to enter here into details; many excel­
lent references are easily available (e. g. G o o  d a l l  1952; A n d r e -  
w a r t h a — B i r c h 1954: D a g n e 1 i e 1960, 1965; G r e i g —
S m i t h  1964; K e r s h a w  1964; L a m b e r t  — D a l e  1964; 
P i e 1 о u 1969, etc.). It is fairly well-known that the vast majority of 
studies on association (in particular, in recent years) is motivated by the 
problems of ordination of living communities. Much work has been done 
mostly on sorting algorithmus based on independence, both on interlocal 
and interfloral (-faunal) similarity relations (cf. W i l l i a m s — D a l e  
1965; M a c n a u g h t o n - S  m i t h 1965; M с I n t о s h 1967; 
A l e k s a n d r o v a  1969; etc.). In spite of this — or perhaps because 
of it — some rather important problems (being outside the realm of the 
present-day ordination practice) seem to be virtually neglected. Consider 
only two of them.

I. 2. 1 Our knowledge of association process in space (roughly, change 
of association in space) is extremely limited. G r e i g  — S m i t  h’s 
warning (1964, p. 105: „The effect of sampling size on indications of 
association has been largely overlooked. . ”) is still apt to make. Clearly, 
any statement of the sign, number or strength of association measures is



related to a point (or an interval) of a spatial process, if only one definite 
size of sampling units was used.

1* “· 2 We know next to nothing about the spatial changes of purl idi 
or multiple association measures among 3, 4 ,.. populations. Except a 
very limited number of papers (e. g. C o l e  1957; J  u h á s z -  N a g  y 
1967) almost all studies are concerned with pairwise association which 
— one has the feeling — is somewhat “unnatural”. A rather “more na­
tural ’ measure would be total association of a faunal or floral universe 
(cf. P. I.).

I. 3 Considerations such as those just mentioned suggest that it 
would be useful to know something about the trend of spatial changes 
of total association. This paper is aimed at showing a simple modeling 
of such a problem.

Associatum is defined to be the total association of a faunal uni­
verse (faunal set of interest). By associatum process a spatial process (of 
faunistic nature) is meant (bv means of a discrete approximation), excl. 
temporal and grouping processes. Associatum is expressed in terms of 
information theory (more precisely, in terms of information sensu 
S h a η η ο n). There is again no need to enter into details; the reader 
can sonsult some excellent references (e. g. W i l l i a m s  -  L a  m b e r t  
1966; P i e l o u  1 9 6 9 ; Or l o c i  1971; D a l e  1971 ) and their biblio­
graphies.

II. Modeling

II. 1 Let Qr be a faunal universe (as a set universe of populations) of a 
given object (Cladocera fauna of a pond, in this case), Qr = {<7,, q.„. 
qe,. <7S.}, Let, further, Fx be a class of sampling units (volumes), accord­
ing to an X  „increasing algorithm”, Fx = {F,, V2, . . . ,  F j,.. . ,  F„}, 
where, in our case, Fj is a set of sampling units of 2> ml. size, F, = {)/,’ 
vj2.. rjK, . ., rjm}; и =  8 (the largest sampling size is 256 ml.) and m =64 
(all Fx set elements eonsits of 64 volumes of a given size randomized over 
the surface of the pond).

Let us consider the Cartesian product of QY and Vr QT X  V], and a 
binary relation, />„, called intersection, defined between each ordered 
pair < 7,,. % > ,
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and let

( Π ;  1 )

(II; 2)

where q'e stands for the set of body points of q„. Let QTX Fj be trans­
formed into a f/j binary contingency table (by permitting summation 
in marginals) so that
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(II; 3)
where the following terminology (cf. P. 1. in detail) is adopted:

/*jf.] (local valence) гЦя (faunal valence) 
rje0 (local invalence) r0jK (faunal invalence) 
iVj (total valence) щ (total invalence).
Let IIq Vie faunal power set of Qr, IIq = {π0, щ , ........лгк.........-т„}.

w = 2s—1, where .тк is a potential fauna (any subset of Qr), and let / jk 
be the frequency of 7гк and Fi the frequency distribution of rrk’s in Uj. 
Faunal diversity is characterized in P. I. by the function

For the sake of convenience, let

(И; 4)

(II; 5)

(II; 6)

(H; 7)

( H ;  8 )

(H; 9)

( И ;  H > )

(И; i i )

The simple concepts and estimators above are preliminary ones to the 
following reasoning.

II. 2 Association (“simple”, pairwise association) is interpreted bet­
ween pairs of local vectors of f/j (cf. P. I.) bv a 2 χ 2 scheme, whose mole­
cular events are: (<11=-, <10=-, <01=-, <00=-). Comparing 3 local 
vectors begins with attaching frequencies to molecular events ( < 111 > , 
< 110> , < 101= -,..., < 000=-). In the case if all the local vectors of 
f/j are to be compared, we have a 2χ 2χ  . . .  χ 2 table with 2s molecular 
events representing all ordered s-tets possible (all subsets of Qr)· Let us



cali such a table A'j with respect to Uj. Frequency distribution of K. 
clearly corresponds to Fj (because events of A'j are equivalcnt with that 
of / / q) and marginals of A'j correspond to local valence and invalence sets 
ot A j. I hus a weighted estimate of associatum expressed as multipel 
information has the form (cf. К  u 1 1 b a c k, 1959):
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(II; 12) 

(II; 13) 

(II; 14)

With a slight change of quantities in (II; 12)

the first term.
where

called local distinction, requires some further considerations, and 
— the second term corresponds to ml)j of (II; 4), 

faunal diversity.
I hus, associatum (total association) is separable into two additive 

components, meaningful in themselves:

,  U· 3 L®! us examine local distinction more closely. Such quantity as 
m slfv , [q, г|) is best interpreted as one related to preferential relations 
(с/ | ,  Q.u ar_s 1 * e r ·, 1953; J » b á s z -  N a g y, 1964). The positions 
ot 1 s in l j show how certain populations prefer certain volumes (of 
ji-sizo) to others, and vice versa, according to the attribute duality principle 
of the Southampton group (cf. e. g. L a m b e r t  -  Da l e ,  1964).
I lefeiential relations may be first approached bv a conceptual triplet 
(choice — selection — preference).

a) A random choice of an ordered pair in f/j is characterized by 
(II, 1 ).

b) Random selection (as a repetitive choice) of a particular object is 
characterized by a corresponding pair of valence and invalence value.

r ) 1 reference (of some kind) is characterized by some function defi­
ned on the frequency distributions of valences and invalences.

Let us define three abstract partners in our selective situation, an 
average population (q), an average sampling volume, of a fixed size (v), and 
an average intersection (i) related to that size. All partners are endowed 
with selective property. Namely,

-  q selects volumes from the elements of Rj,
-  v selects populations from the elements of QT,
-  i selects ordered pairs from the set of ms ordered pairs of a Uy
Let us call a “positive random choice” in (II: 1 ) a coincidence (ri(.c= 1 ) 

Assume a classical probability field (cf. K h i n  c h i n. 1957), equiproba- 
bility of coincidences, t. e. p(q) = 1/s, p(v) = 1/m, p(i) = 1 jms. Thus, in 
terms ol information theory, we have

(II; 15)
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(II; io)

(II; 17)

(II; 18) 

(Π; 1»)

(II; 20)

some uncertainty measures of the Hartley type, and further, for joint 
entropy measures, we have

It is fairly easy to see that having (II; 10) and (II: 17) a whole 
system of information functions

can lie obtained, where each function has a definite bearing on a certain 
aspect of preferential relations. Unfortunately, owing to a lack of space, 
without referring to some important properties of these information 
quantities, we must confine ourselves to our special function of (II; 14).

III. 3.1 Now, from a formal point of view, this quantity can be 
expressed either as multiple information of partner v with respect to the 
joint finite scheme of the other partners, [q, ij.,

or as conditional information of joint finite scheme [г:, i] with respect 
to partner q,

The equality îj(v, [q, г]) = /j([r, i]|ÿ), of course is, a consequence of 
the equi probability condition fo our model system. These two quantities 
ought to have been different if basic assumptions were different.

III. 3.2 Coming to a more interpretative view, let us consider first 
the following additive relation:



(И; 2i)

(II; 22)
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(1) in (II: 21), being contingency information of a 2χ.ν table related to 
l j of local valences and invalences, reflects upon the difference among 
populations in their local preferences. On the one hand, if we deal with an 
équiprobable local valence set (i.e.all local valence values of a Üj is 
equal to N ^s, local densi!//), then Ij(q.i) is,zero, and /j (v, [q, t]) is 
of maximum value, /j (v, [r/, i]} = /j (i, [q, <?]). On the other hand, if local 
valence set has an “unequal” frequency distribution of the highest 
degree (i.e. iVj /m values are equal to m, and the rest is zero), then /, (q, i) = 
= /j (/, [q, г·]), and /j (r, [q, i ]) = 0. These boundary relations have different 
bearings on a number of synbiological problems. At the moment we are 
interested here in the following intuitive meaning.

II. 4. Let

called faunislic marginals (in brief, /-marginals) with respect to U j. We 
can think of/-marginals in pairs, calling them local, faunal, valence and 
in valence marginals, resp. Valence marginals of t/j can be characterized 
by an ordered triplet of faun islic mean densi!// values, < aq , .q, Aq > , 
where

— «q is a mean local density, >щ = Aq/*·,
— Sj is a mean faunal density, .Sj = ATj /m,
— ATj is a mean total density, N\ = A’ /ms,

and where “faunistic density” means a “rate of scoring” , instead of 
“number of individuals” .

II. 4.1 Let us define the following weighted entropy values (on the 
/-marginals of Uj ), referring to marginal uncertainties:

(II; 23)

(II; 24)



Functions of (II; 23) are monotonously increasing, those of (II; 24) are 
monotonously decreasing with increasing of sampling unit sizes. (We 
believe that these functions are optimum substituents of “species area 
functions” used so far.) The best property of these functions is that at 
each Vj they are bounded bv the following inequalities:
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(Hi 25)

(II; 20)

(II; 27)

as empirical gain of information measures at Fj indicate how diverse 
empirical /-marginals are. In a monovalence state, when there is no 
marginal diversity, the proper upper deviates become zero. On the other 
hand, in the same case, proper lower deviates have maximum value. 
This shows that marginal diversity (sensit generali) should lie estimated 
from both extremities at the same time.

III. 4.3 Now. it is rather easy to see that

(II; 28)
and

or, lower deviates,

where maxima are due to monovalence slate (if the proper valence values 
are all equal to one another, ..e. to the corresponding mean density), and 
minima are due to oligovalence state (if a number of valence values reach 
their maximum and others remain zero). This relation was already com­
mented upon in III. 3.2.

III. 4.2 According to inequalities of (II; 25), either upper deviates,



4 6  JU H A S Z  — N A G Y  — D É V A I — H O R V A T H

(II; 29)
i.e. the pairwise sums of upper and lower deviates, resp. correspond to 
the quantities in (II; 21).

III. 4.4 This relation allows us to reformulate (II; 15) by parti­
tioning associatum into three diversity components

(II; 30)
where the meaning of each component is interpretable and related to 
a framework of concepts.

III. Illustration and interpretation

111. 1 Data. In our case, where (a) QT, faunal universe is a set of 10 
Cladocera taxa (*· = 10) denoted as (A , 11,. . .,/<) in P. ]., (b) I'j is a set 
of cubic shaped sampling units (m = 64) of 2j ml. size, (c) j  = 1, 2.. .,8 
(u = 8), i. e. I X is a series according to the increasing powers of 2, we 
have 8 binary contingency tables (t/j) ol 10X64 size whose valence .yets 
are given bv tables 1 and 2.

III. 1.1 Local valence sets are shown by the columns of table 1, 
where double row symbols (as alternative notation) stand for the elements 
of Qr (ef. P. I., II. 2)

Tahi e  I.

v2 V3 V4 Vs
1

ve V- Vg

A Πι 0 1 1 21 51 53 62 64 64

В 15 24 36 63 63 64 64 64

C q* 5 10 2. 5] 55 62 04 04

D cl. 1 1 2 3 0 10 42 64

E cb 1 1 3 12 14 26 50 64

% 21 39 57 64 64 64 64 64

G 47 4 9 17 21 32 60 64 64

qs 4 <> 24 17 27 CO 64 64

t Чэ 0 0 0 1 7 11 3S 64

К Чю 1 0 1 3 5 12 33 64

58 101 1S2 286 326 431 547 640



III. 1.2 In table II. a variable ψ is introduced which has possible 
values of faunal valences (ψ = 0, 1,. . ., 10). Thus, an entry, k)v, of the 
first part of table 2 represents frequency of a given value of faunal va­
lences in i/j. Naturally, weighted frequencies of that sort sum up to total 
valence,

M O D E L -B U IL D IN G  IN  S Y N B IO L O G Y  4 7

as it is shown in the second part of table 2, where series of total valences, 
N x < Nг< . . . < ΛΓ8, corresponds to that of table I.

Table I I .

V, v. V» V| V* Ve Y- v$

ψ =  0 17 7 0 0 0 0 0 0 V, v2 V , v 4 v 5 V . V , V .

1 3(1 29 9 0 1 0 0 0 36 29 9 0 1 0 0 0

2 11 1(1 17 2 2 () 0 0 22 32 34 4 4 0 0 0

3 0 8 21 12 3 и 0 0 0 24 63 36 9 0 0 0

4 0 4 11 22 15 1 0 0 0 16 44 88 60 4 0 0

5 0 0 4 15 17 5 0 0 0 0 20 75 85 25 0 0

(i 0 0 2 8 1(1 23 3 0 0 0 12 48 96 138 18 0

7 0 0 0 5 9 23 12 0 0 0 0 35 63 161 84 0

8 0 0 0 0 1 6 15 0 0 0 0 0 8 4 8 120 0

9 0 0 0 0 0 5 15 0 0 0 0 0 0 45 135 0

10 0 0 0 0 0 1 19 (14 0 0 0 0 0 10 190 6 4 0

(14 64 (14 (14 64 (14 64 64 5 8 101 182 2 8 6 32 6 431 547 6 4 0

III. 1.3 Results based on data of tables I. and II. in relation to our 
basic function (I; 15) is shown by table III. All quantities are given in 
weighted nils (natural units), i. e. log. not. was used.

We believe that at least “the qualitative trend” of these funtions 
in table III. are clear and interprétable. This view is supported by some 
considerations presented below and by experience of one of us (P. J-N .) 
with respect to terrestrial communities; all functions studied so far are 
similar to that of table III.

III. 2 Trends. Examining the trends of functions in table III., our 
question is how change associatum in value with increasing size of sampl- 
ling units.



Table I I I .
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m/jpl , 1

!

3 = 1 20.30 15.4.20 137.96
2 25.52 198.54 173.02
3 50.35 252.58 202.23
4 30.23 207.03 177.40
5 47.02 241.69 194.07
ti 22.53 179.02 150.49
7 16.50 102.44 145.94
s 0.00 0.00 0.00

III. 2.1 It is observable that mî\\/,\, j  = 1, 2, .. has two “peaks” such 
Ihat the first one (cea. at 8 ml.) is somewhat greater than the second one 
(somewhere about 82 ml.). We believe that these two peaks correspond 
two volume sizes characterized by “the dominance of negative and posi­
tive association ', resp. We intend to show in a further part of this series 
(or elsewhere) that this is the case. At the moment we confine our atten­
tion to the additive relation of table III., i. e. to the components of asso­
ciatum.

III. 2.2 We know already (from P. /.) the trend of mflj  which func­
tion has maximum values (somewhere about 8 ml. and 32 ml.), called 
maximum vohimes, V„wx, where faunal diversity (with respect to IfQ) or 
inpredieability of /'j is ol the highest degree. Fnl:lx is contrasted with 
minimum volume, Fmln, where (at a size less than or equal tp 250 ml.) 
there is no faunal diversity whatever and faunal predicability is perfect.

III. 2.3 I „mi of course, is a concept of general importance. It can 
be said as axiomatic that all characteristic functions of faun istic nature 
must reach zero value at Fmin (since all objects -  faunas, loci, etc. -  are 
equivalent faunistically to one another): for instance, all information 
functions of II. 3 have this property. (Naturally, the phrase “characteris­
tic function is used here in a svnbiological sense of the word, not to be 
confounded with the well-known term of probability theory.) Fnwx and 
! min are characteristic volumes. For a more general definition we can put 
forward the following one. A characteristic volume is defined bv the 
extreme values (maxima, minima) of some characteristic functions with 
respect to the interval [F0,Fmin]. We can quess that there are other im­
portant characteristic volumes than Fmax, Fmin.

Indeed, a new type of characteristic volume, called compensatorii 
volume, Ff0mp, is one, where Aq = щ = msj2. i. e. where total valence 
and invalence values (or, number of coincidences and incoincidences; 
cf. II. 3) are — at least, approximately — equal to each other. In our case 
Î comp is at Fs, where Ns = 326. incidcntically quite close to msj2 = 320.



Clearly, Fcomp need not be equal to Fmax.(In terrestrial plant communities 
for maximum area, Лтах, and compensatory area, AC()mp, the relation 
Лтах-  Лотр is generally true.) Unfortunetelv, our data are insufficient 
to make such a distinction, if there is any. But we can infer even from our 
“weak data” of table i l l .  that a number of characteristic volumes (e. g. 
maxima and minimum of associatum) are more or less close in size to 
Fcomp- This is so as each characteristic function has a „rising part” (when 
sampling units are “small”) and a “falling part” (toward Fmin, Лт1п, etc.), 
and, between these two, at an interval, a “part”, where one or several 
characteristic volumes occur. We may call this interval a compensatory 
interval.

III. 2.4 Function ms/j(i,[?,?]) in (II; 21), for instance, has always a 
unique maximum at F(.(),1)p. max ms /)(;',[r/,r]) = ms log 2. because its 
only variable, yj, has its own minimum, minyj = ms log ms—ms log 2, at 
that size of volume. It is worth considering the two types of partition of 
this quantity mentioned in II. 3.2 —.

HI. 2.4.1 First, table IV. shows the double partition of msl^i^q.v]) 
in (II; 21).

Table IV .
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rnxtjU, |7, с]) = msljtq, i) - n»/j(v, [q, Í])

j  =  1 194.888 36.626 158.202
2 279.39Г. 80.856 198.540
3 382.444 129.865 252.579
4 440.335 232.703 207.032
5 443.842 202.149 241.693
e 404.039 225.021 179.018
7 265.615 103.170 102.439
8 o .o o o 0.000 0.000

III. 2.4.2 »Second, table V. shows the quadruple partition of the same 
quantity according to III. 4.3. Note that upper local deviates sum up to 
tnslj(q,i), lower local deviates sum up to msîj(v,[q,i]), and the sum of the 
four quantities involved is equal to the corresponding value of insidi, 
[?.«])·

III. 2.5 Let us examine in brief table V. It is noteworthy that lower 
deviates have common maxima (at F3 and F5) contrary to the different 
trends of upper deviates. This is resulted in the difference between the 
trends of msîi(q.i) and msîi(v,[q,i]) in table IV. All quantities (all the 
deviates of table Y.) are some diversity measures but lower deviates show 
how empirical marginal diversity differs from a minimum marginal 
uncertainty.

4  ANXALES — Sectio WoloRica — Tomus 15.



Table V.
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III. 3 We gratefully acknowledge the cordial help of staff people- 
at the computer station of the L. Kossuth Univ., Debrecen.

IV. Summary

Associatum is defined to be total association of a biotal universe. 
Associatum (expressed here as total information of some kind) can be 
partitioned into additive components (preference and diversity functions) 
whose change in space (with increasing unit sizes of sampling) can be 
related to associatum process in space.

R E FE R E N C E S

A l e k s a n d r o v a ,  V. D. 1909. Classification o f vegetation (in Russian). X auka, 
Leningrad.

A n d r e  w a r t  h a ,  H.  — L. B i r c h ,  1954. The d istribution and  abundance o f an i­
mals. Univ. o f Chicago Press, Illinois.

C o l e ,  L. C. 1957. The m easurem ent o f partia l interspecific correlation. Ecol. .48: 226 — 
233.

D a g n e l i e ,  P. 1960. C ontribution à l’é tude  des com m unautés végétales par l’analyse 
factorielle. Bull. Serv. Carte Phytogéorg. Sér. B. 5: 7 — 71: 9 3 -  195.

D a g n e l i e ,  P. 1965: L’étude des com m unautés végét a 1rs par l’analyse sta tistique; 
des liaisons en tre  les espèces e t les variables écologiques. Biometrics, 21: 345-361  
890 -  907.

D a l e ,  M. В. 1971. Inform ation analysis o f quan tita tive  da ta  IN: „S tatistical Ecology” 
voi. 3 (ef. P atii — Pielou — W aters): 133— 148.

D é v a i ,  I. — K.  H o r v á t  h -  P.  J u h á s z  - N a g y ,  1971. Some problem s of 
model-building in synbiology. Part 1. Spatial diversity process o f the b inary  type 
in a simple situation . Annales Univ. Budapestinensis, Sect. Biol., 13: 1 9 -3 2 .

G о о d a 11, D. W. 1952. Q uantita tive aspects o f p lan t d istribution . Biol. R ev., 27: 
1 9 4 -2 4 5 .

G r e  ig  - S m i t h ,  P. 1964. Q uantita tive plant ecology. B utterw orths, London.
J  u h á s  z - N a g y , P. 1964. Some theoretical models o f cenological fidelity. Acta Biol. 

D ebrecina, III:  33 — 43.

, Δ-Vj/Zj (Д/q) A»j//j (niq)
1 1

V-Vjt/j (J1 q) r̂ n\^ )  (,nq)

3 =  1 32.512 4.414 106.778 51.484
2 65.557 15.299 120.978 77.562
3 88.467 41.398 140.487 1 12.092
4 117.786 114.917 112.732 94.900
5 91.521 110.628 128.562 113.131
6 77.455 148.166 93.174 85.844
7 14.415 88.761 71.766 90.673
8 0.000 0.000 0.000 0.000



J u h á s z -  N a g  y, P . 1007. On association am ong plant populations. P art 1. M ultiple 
anti partia l association: a new  approach. Ibidem , V: 43 — 56.

K  e r s h a  w, K. A. 1964. Q uantita tive and  dynam ic ecology. E. Arnold, London.
К  h i n  c h i n ,  A. J .  1957. M athem atical foundations o f inform ation theory. Dover, 

New York.
K u l i b a c k ,  S. 1959. Inform ation theory  an d  statistics. J .  W iley, New York. 
L a m b e r t ,  9. M.  — M. B.  D a l e ,  1965: The use o f s ta tistics in phytosociology. 

Adv. ecol. Res. 2: 59 — 99.
M a c n a u g h  t o n - S m i t h ,  P . 1965. Some sta tistical and  o ther num erical techniques 

for classifying individuals. H . M. S. O·, London 
M e  I n t  о s h, R . P. 1967. The continuum  concept o f vegetation. Bot. R ev., 33: 130 — 

187 (Responses. Ibidem, 34: 253 — 322).
O r 1 о с i, L. 1971. Inform ation theory  techniques for classifying p lant com m unities.

IN : ..S tatistical Ecology”. 3 vols. (cf. P a tii —Pielou — W aters): 259 — 270.
P a t i i ,  G. P. — E. C. Pielou — W. E . W aters (ed. s) 1971. S tatistical Ecology. 

1—111. Pennsylv. St. Univ. P r., Univ. Park.
P i e l o u ,  E. C. 1969. An in troduction to  m athem atical ecology. .1. W iley, New York. 
Q u  a s  t i e r ,  H . 1953. The m easure of specifity. IN : „Inform ation  theory  in biology” 

(ed. by H . Q uastler: Univ. o f Illinois P r., U rbana) : 41 —71.
W i l l i a m s ,  W. T. — M. B. Dale, 1965. Fundam ental problems in num erical ta x o ­

nom y. Adv. bot. Res. 2: 35 — 68.
W i l l i a m s ,  W. T. — J .  M. L abert, 1966. M ultivariate m ethods in p lan t ecology. 

V. Sim ilarity analyses and inform ât ion-analysis. J .  Ecol. 54: 427 — 445.

M O D E L -B U IL D IN G  IN  SY N B IO L O G Y  61

4 '


