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I. Introductory notes

L1 Diversity(in the present sense of this concept) is a synbiological
basic phenomenon, similar to other basic phenomena (e.g. similarity, pre-
ference, etc.). The intuitive meaning of the term “basic phenomenon”
should first be investigated.

1.2 Let us make the following, very general “mental experiment”.
Let Z be the set of all populations which ever lived and live, a set of finite
cardinality z, i.e. a set of zpoints. Let, furthermore, be given an n-dimen-
sional abstract space, X, whose coordinates are: (@ ) the 3 coordinates of
the real (topographical) space, (b) the time axis (as the real number line),
(¢) the coordinates characterizing the possible quantitative representa-
tions of the populations (e.g.density, abundance, ete.)

Now, an absurd hypothesis (say, “existential indifference hypothesis”)
that “whatever population may be found in whereever, whenever, and in
whichever quantity” is equivalent with the statement that all elements
(points) of Z may be characterized by any n-dimensional vector of X  Of
course, if this statement were true, it would mean that Nature as “experi-
mentator” randomizes z points in X,

We know that this hypothesisis false: thisis a trivial non-sense. It is
shown by a huge body of evidence that the z points of Z form very dif-
ferent sorts of aggregates in X ,,. But, of course, it is almost always extrem-
ely difficult to say how the points form “groupings”, how they become
denser of rarer in X,

This is why the distinetion of basic phenomena is necessary. It may
be truly said that all research work in the field of synbiology may be re-
garded as special sort of negation of the central hypothesis mentioned
above with respect to a certain subset of Z and to a certain subspace of
X,,. But, of course, this negation is possible (even, with respect to the same
object, i.e. to the same subset of points in the same subspace of X,) in a
vast number of ways; it depends — ¢nter alia — on the mathematical
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model of a particular investigation. Now, model and basic phenomenon
are clearly closely related.

By basic phenomenon the following on the whole is meant. If the
different methodological types of the negation of the central hypothesis
is approached so that they can be satisfactorily described by some “gener-
al model” (e.g. by some urn model, ete.), further, by some “working
model” (e.g. by that of the statistical type), in such a way that their bio-
logical meaning is more or less clear, then a phenomenon (related to a
logical typeof negation) can be considered a basic phenomenon. There are
many types of basic phenomena (e.g. similarity among biotas, association
among populations, species-area-relations, and so on; ¢f. e.g. Preston
1948, Elton 1949, Black—Dobzhansky—-Pavan 1950,
Goodall 1952, Andrewartha—Birch 1954, Sokal 1961,
Greig—Smith 1964, cte.)

1.3 The trouble lies naturally in the fact that several authors delimit
the given basic phenomena by different means and investigate them by
various methods, frequently without ever submitting or publishing an
adequately precise description of their approach. (For instance, it is rarely
recognised that “interspecific correlation™ is not synonym with “associa-
tion” but the former is a definite subcase of the latter, if and only if certain
linearity and normality conditions are satisfied.) It is quite possible that
more carcon the “general model” and the relation between general and work-
ing models would improve the conceptual clarity. Take, for instanee, the
concept diversity, Most of the diversity types are distinguished according
to their working models, only (ef. MeI n t o s h 1967), but almost all consi-
deration are related to one single general (theoretical) tvpe of diversity,
namely, “individual diversity” (where the distribution of numbered indi-
viduals is studied into categories, e.g. taxa). On the other hand, there are
a number of other general types of diversity; in fact, all “natural” frequen-
cy (or probability) distributions (e.g. distribution of biotal combinations
in this paper, distribution of “Raunkiaer frequency values”, ete.) may be
regarded from the same point of view. But, just for this reason, one has
the feeling that the “general concept™ of diversity is essentially undefined.
Perhaps such a general definition would relate the possible and “realized”
(empirical) vectors of some properly defined abstract spaces (a definite
subspace of X)), and, in the same way, “similarity” may be regarded as a
basic phenomenon due to the systematic comparisons of empirical vec-
tors, and so on.

I.4 Within the scope of the present paper, however, we cannot under-
take this task even with regard to a single basic phenomenon. On the other
hand, our endeavour is to assure a proper unequivocality of our very
simple considerations by the construction of a mathematical model system
presented herewith.

1.5 The investigation of the chosen basic phenomenon (diversity) had
the following stages in recent times. First, K.11.Sim pson (1949) publish-
ed a simple “diversity index”. Beside its simplicity, this index (intended
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to serve mainly large-scale evolutional comparisons) has a great number
of drawbacks. Their discussion is given by C.B. Williams (1964, p.
147 ).

Following S i m p s on, several authors published diversity indices,
mostly of mere empiric nature. A significant breakthrough was given only
in the works of Margalef (1957), Hutchison (1953, 1958), and
R.I.MacArthur —J. W.MacA rt hur (1961) as well as their disciples
and followers (e.g. Hairston 1959,1954, Klopfer 1959, Klopfer
— MacArthurl1960,Conell—0Orias1964, Grice—H art 1962,
Lloyd — Ghelardi 1964, ete.); an excellent review is due to
Mcel ntosh(1967). It is they who recognize the close relationship of the
synbiological diversity with certain physical occupancy problems, and
the importance of the diversity conception in connection with niche-
seggregation.

II. Material and method

I1.1 In relation to such a general consideration of diversity, a number
of formulations and also a variety of their approaches are naturally pos-
sible. Under the “simple situation™ indicated in the title of this paper we
refer to the following restrictions.

We have delimited our investications («) to a single animal group
(b) of a single geographical object, and (¢) to a faunistic-binary appro-
ach (d) connected only with spatial (and no temporal) diversity processes
(¢) based enterily on one simple model system of information theory (ne-
glecting other types of statistical working models; ef. MeIntosh 1967).

The basic data of this tyvpe of study were obtained from a survey
(the 26th of July — the 5th of August, 1968) of Cladocera fauna, present
in Pond N° 10 of the fish-pond system at Bdnhalma (in the central part
of the Great Hungarian Plain; near the village Kenderes), a property of
a state estate, that is, by caunting 66 565 individuals of 10 taxa in 8. 64 =
= 512 sampling units (¢f. T1.3). The hyvdrological, chemical and hydro-
biological properties of this shallow pond (cea. 90 em., in average; cca. 51
cadastral voke, in size) are well-known, but, owing to a lack of space,
these important data must be omitted.

1.2 The of taxa of Cladocera fauna are as follows:

1. Bosmina longirostris C.F. Miiller
var. pellucida Stingelin (henceforth: A)
2. Bosmina longirostris O.F. Miiller
var. similis Liljeborg (B)
3. Bosmina longirostris O.F. Miiller
rar. cornute J urine (C)
4. Bosmina longirostris O.F. Miiller
var. brevicornis Hellich (D)
5. Daphnia longispina O.F. Miiller (E)
6. Chydorus sphaericus O.F. Miiller (F)
. Ceriodaphnia pulchella S a v s (G)
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8. Ceriodaphnia quadrangula O.F. M iiller (I)
9. Moina brachiata J urine (I)
10. Moina rectrirostris e y d i g (K)

I1.3 Concerning the plan and execution of the sampling the following
should be mentioned. The tree-dimensional shape of the sampling units
was approximately a cube. The sizes of the sampling units were selected
according to the increasing powers of 2, from 1 to 8, thus, we took 2,4,8,
16,32, 64,128 and 256 mililiter (ml.) water for different sampling sizes
(volumes). The cardinality (number) of sampling units was 64 for all
sampling volumes. The laying-out of sampling points (for locating the
sampling units) was of the random type.The randomizing instructions
of sampling were obtained by constructing a table of pairs of random
numbers so that its first column represent random values for a compass
(0—360), and in its second column the corresponding random values show
the number of oar-strokes to be made in the given (random) direction.
In such a way the sampling is similar to a “Brownian motion” in the
surface of the pond, i.e. the gth sampling point is located by a pair of a
random angle and a random distance with respect to the (y—1)th
point. It could thus be assumed that the several sampling points may
be more or less independent of one another, that is, all points of the pond
may be selected equiprobably.

ITI. Coneepts and notation

IIL.1 There is given the V set class of the compund existential units
that is,
F &=V Vs s s x5 oy B w5 5 w3 Pg) (1)

where V' is a set class of 8 elements in which V;is a set of sampling units
of 2¢ ml. size, and

v,

0 () ()
T b AT, . | A (2)

where, again, V,; is a set of 64 elements (m = 64) in which »{ is the k"
sampling unit of 2/ ml. size.

There is given, furthermore, the @ set of taxa in I1.2,
Q=Ad,B;: v 5 sy By i 5 ¢ s ¢ ; (3)

called faunal universe (i.e. a set universe, a set of all basic objects of a
particular study).

There is given a random variable, R.%), showing the degree of re-
presentation of taxon E in ("), binary, R.{), in the simplest case. Let £.(2) =
Tgr = and let

riee = {1, 0} (4)
that is,
rige = 1, if taxon K is present in {,

Il

i = 0, if taxon £ is absent in v{?.
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ITI1.2 Let us construct a set of binary matrices of size 10 X 64, one for
each element of V[(1)], where the rows and columns represent the ele-
ments of sets @ and V,;[(3), (2)], respectively, and where the empirical
value of r;[(4)] is the (E, k)th entry of the 7th matrix Let. further,

64 10 64 10
> Tigk = Mg s D Tiek = Wi D, D Tiek = N (5)
k=1 E=1 k=1 E=1

and, in such a way (permitting summation in the marginals), we obtain
the 7th binary contingency table of a set of such tables, called faunisitic
composition of order 7

Vv,
Q L 0 [ o
7
E | ............ P — B [ N (6)
K |

abbreviated as U,.

Consider the following definitions with respect to U ;:

ng, called local valence, of taxon E in U;, shows the number of
sampling units of size 2/, where taxon F is present,

Ny, called faunal valence of v in U;, shows the number of taxa
which are present in v,
called total valence of U
in L’i’

q;r» 18 the binary row vector as local vector belonging to taxon k£,

N shows the number of all presences

i 0

qis 18 the binary columnal vector as faunal vector belonging to o}

Jip»  the subset of those elements of set V', whose 7,5. values are®1”,
is called loci of taxon FE,

Pue  the subset of those elements of set @ whose 7., values are “1”
is called fauna of v{?,

11,
®;, the set of all empirical faunas of U, is called faunal class of U,.

the set of all empirical loci in U, is called local class of Uy,
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It should be noted that the above definition of fauna is in agreement

with the traditional interpretation of this concept, with the difference,
that our outline is a result of a set theory approach. Fauna is regarded to
be a subset of a set (called faunal universe), or, equivalently, an element of
a power set (called faunal power set; ef. IV.). Note, further, that a concept
(“attribute dual” to fauna) was missing and is needed; this is the concept
:alled loci. Consider the difference between three adjectives:

— “faunal” (related to fauna)

— “local” (related to loci)

— “faunistic” (simultancously related to both fauna and loci,

U; being a joint function of faunal and local binary relations).
Note, still further, that “local valence” is synonymous — mulatis
mulandis — with “frequency of Raunkiaer” (commonly used in plant

sociology), and, “faunal valence” is synonyvmous with the common ex-
pression “number of species.” Beside some drawbacks of these traditional
terms (e.g. talking of frequency distribution of the former, one should
think of “frequencies of frequencies”™), it seems to be desirable to use a
common terminology for both marginal distributions which are again
“attribute duals” to each other.

I11.3 All faunistic functions are related, of course, to Bernoulli model
(as a “general model”, in the sense of 1.2) with “ves-no” type of elemen-
tary decisions.

Our sampling was made in such a way that, as practically possible,
all individuals of every taxon within all sampling units have been registered
(for further use), but in the present paper we consider only the above
faunistic “presence-absence” data (8-10-64 = 5120 elementary data in
all).

IV. Working model, results, and interpretation

IV.1 The empirical contingency tables (see e.g. table 1. as one table of 8
such tables) obtained after this (faunistic) type of elaboration of our
empirical data can be evaluated in several ways with respect to the aims
of investigation. Namely,

() the frequency of the empirically obtained indentical binary
columnal vectors (faunal vectors) can be compared with that of
the set of possible columnal vectors,

(b)  the frequency of the empirically obtained identical binary row
vectors (local vectors) ean be compared with that of the set of
the possible row vectors,

(¢)  the empirically obtained binary columnal veetors can be com-
pared (per two, three,. . .) according to the frequency of agree-
ing elements,
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(d) the empirically obtained binary row vectors can be compared
(per two, three,...) according to the frequency of agreeing
elemets,

(¢) marginal distributions can be compared (in different ways).

Points (a) and (b) can be interpreted as combinational problems,
since, for example, in the case of point (), the question concerns the fre-
quency distribution of the set of all possible subsets of ¢, and elements
(symbols) are not ordered. In the cases of (¢)and (d,) the problem is related
to the frequency distributions of ordered elements of vectors (for in-
stance, in a pairwise comparison, the frequency distribution of a set of
four elements, more precisely, ordered pairs, {(11), (10), (01,), (00)}, is
considered), thus, roughly speaking, the model-building is interconnected
with the construction of new contigency tables of 22,23, .. cells. In the
sase of point e the marginal distributions (or, the frequency distribution
of the valential values) are to be compared.

The possibilities of evaluation outlined above is a starting point to
study to following basic phenomena:

() faunal diversity | [ faunistic
(b) local diversity | | diversity
() interfaunal similarity | [ faunistic
(d) interlocal similarity | | similarity
(e) faunistic preference of different type

(e.g. fidelity, ete.)

1t is well-known that many types of further evaluation are used to
the different basic phenomena, in particular (¢) and (d),in “quantitative
plant ecology™ (ef. Greig—Smith, 1964), where, of course, “faunal” and
“faunistic” are to be substituted by “floral and “floristic”, resp. (d) is
commonly known as “association”. According to our restrictions in 11.1,
we are concerned here only point (a), faunal diversity, a new type of di-
versity. The basic question of (@) is— to speak figuratively — how Nature
as “experimentator” utizilizes the “avaible possibilities™ in distributing
the set of avaible “alphabetic stock” (i.e. set @) as basic (elementary) ob-
jects into combined objects (namely, faunas), or “combinational words”,
and these combined objects into the existence units. It is rather easy to
see that this problems corresponds to the “vectorial interpretation™ of
diversity, mentioned at the end of 1.3.

1V.2 The task is, of course, to find a function with certain optimum
properties characterizing faunal diversity. The following postulates are
obvious:

(1) the value of such a function is minimum (zero), if and only if

every fauna is indentical in every v(,j), & =1,:20500 M
(2) the value of such a function reaches a (theoretical) maximum, if
and only if every fauna is different in every v},
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(3) the values of such a function are monotonically increasing bet-
ween the minimum and maximum values indicated above.

Of course, there are an infinite number of functions satisfving these
“weak conditions”. But by a further potulate, or requirement,
(4) let our function be additive,

although not too precice in itself, we can narrow down the range of pos-
sibilities.

Being more specific, let
o = (Fos Tgs o < o 5T o« o ) (7)

where 7, is the faunal power set (with respect to faunal universe, ), the
set of all subsets of @, where

w; is a potential fauna, one distinguishable element of 7 J = 0,1,
Diyos w5 W,
7, is an empty fauna (where no elements of ) are present),

@, 1is a comlete fauna (were all elements of ¢ are present),

w
and w+1 is cardinality of ,, in the present case

10
w+1 = 219 = 1024, because > (¥) = 1024.

e=(

Let, morcover, F; be the frequency distribution of faunal class D;;
with respect to m, (in bm(,f, a faunal distribution of order i)

Fi = {fiofisJior - - oSy - - - i) (8)
w
where f;; is the empirical frequency of ;in @, and = > Jij = m. In certain
i=0
condition (in particular, if m —~ e )fij[m may be regarded as a probability
estimate of ; in @;, p;;.) Although m our case m is rather small, m = 64,
it was shown roughly that the results indicated helow are essentially the
same, if m )64 thus, we can accept fi; /m as a erude approximation of

pi-) Let I’ the ])mlmbzlztz/ distribution which corresponds to (8).
Let, moreover, L be a finite scheme (sensu Khinchin), or, much more
correctly, an empirical finite scheme with respect to z, and P; such that

- o T oot B s w0
2 S ey B )
PivPovs -+ -3 Dip e - s Diw

and, H, be the entropy estimate of L; (sensu Shannon)

- w
Hp= — 3 pijlogpi, (10)
j=0
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It is rather easy to see that (10) satisfies all the four postulates men-
tioned above. Moreover, this way of thinking is very closely related to
that of other authors (e.g. Margalef, 1957, etc.), who used, instead, “the
statistical mechanies” approach interconnected with the multinomial coef-
ficient. Note that ax; may be equivalently regarded as a “combination
without repetition” (in the sense of combinatorial analysis), a “special
event” (in the sense of probability theory), and a “combinational word of
alphabet Q" (in the sense of information theory). Clearly, if s; is multino-
mial (polynomial) coefficient with respect to (8),

B m!
Tigh Jakis « o fgha s o

then, with log s;, the postulates (1) — (3) are satisfied, because 0 = log s;

(11)

Si

= logm. Further, log s; -~ H,;.

IV.3 ﬁ,-, of course, is a measure of uncertainty of faunal distribution
of order i. The value of this measure is obviously depends on the order,
i.e. on the size of sampling units. If, for instance, the sampling volume,
say V ,, is large enough to contain all the taxa considered to be the elements
of a faunal (or biotal) universe, and this is true for all (or, at least, most of)
sampling units of that particular size, then, f,, = m, p,, = 1, and be-
cause

zu= T 200 o w0 s 3T e veseins Thns (12)
O:O)---,O,...,l

then H, = 0 (or, at least I, —~ 0). If we know that V', size (more correctly
the smallest size of that type), then we know that the whole range be-
tween V  and V_, |V, V_|is absolutely homogenous (from a faunal point of
view), where V _ is the volume of maximum size (e.g. the whole volume of
a pond). We know, further, that if V', <= V', then H, = 0, since there is
no other potential fauna thanz, (except, in an extreme sense, 7,) which
can be such hegemonic as z,, in (12). This shows clearly that faunal
diversity (or faunal uncertainty) can be studied properly by a set of
sampling volumes. If the volume uf sampling is increasing, one might
learn the state of faunal diversity in space.

Let us call such an increasing process a spatial process, and in parti-
cular, our empirical process

R R .
Wi=ily =+ 1 s T o 5 e

Bzl s o o (13)
Ty oigon s 5 ooty o 55
Tll*’ﬁz—’..._’ai".
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a spatial diversily process, an obviously crude approximation of a con-
tinous stochastic process. (This process, S., may considered to be a sub-
case of the class of “two-valued stochastic processes™.)

Of course, we are interested in /1,

H ={#,H,...,H,...H) (14)

the entropy distribution with respect to S, characterizing the distribution
of faunal diversity in space.

1V.4 Consider then table 2 and figure 1. It is shown that by the suc-
cessive inereasing of sample volume entropy increases to a certain volume
(“‘maximum volume”), then decreases and tends to zero at a certain volume
(“minimum volume™), where, like in (12), every taxon can in great prob-
ability be found in every sampling unit and thus the order (in this re-
spect) is complete.

IV.5 Interpreting this trend of H, especially the concepts maximum
volume, V. and minimum volume, V,;,, should carefully be consid-
cred. It is easy to see that V.. literally means “a size of maximum
entropy”, and V ;, does “a size of minimum entropy™.

The problem of V' ;, is clearly in close relation to the famous minimum
arca (“minimiareal”) problem of plant sociology. In fact, this is a three-
dimensional generalization of that concept. (Similarly, we can think of a
one-dimensional generalization of minimum area, namely “minimum
linea”, in terms of terrestrial communities.) It is well-known that how
many efforts have been made (in particular, by means of the rather sterile
and non-probabilistic approach of “species-area functions”™) to determine
minimum area (cf. Greig Smith, 1964).. We believe that by a fur-
ther development of the present approach (by means of “gain of informa-
tion” methods; ¢f. Kullback, 1959) this is quite possible.

Table 2.

Sampling
volume mh;

A4 137,96
Vy 173,02
Vi 202,23
V, 177,40
\'5 194,07
Vo 156,49
Ve 145,94
Vg 0,00

Table 2 The m'i[,-vuluos |of H (14)] characterizing
faunal diversity vs. sampling volumes (cf. 11. 3)
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x>

e

; {
Vmcx vmin Vi

Figure 1 The general (“idealized”) trend of function iIX[(sf. (14); H; values (10) vs. I7;
values]; the empirical values of our data in table 2 represent one of its special cases.

Naturally, if our general modelis not faunistic (i.e. not of the Ber-
noulli type) but “quantitative” (i.e. the number of individuals are also
considered) we can think of a special non-faunistic “characteristic volume™
namely, a “representative minimum volume”. Whatever a “representat-
ive minimum volume, V&, is, the unequality relation ]'f,r\)i,,> V min must
be true.

It is, moreover, possible, that a V ,-size (or state) is permitted
only is a maximum size of the sampling volumes (i.e. in the size
of the particular stand), if some populations are located only “in
small subsets” in that particular stand. In this case we can speak of a
“trivial V. The supposed commonness of trivial V', in nature shows
clearly, again, the necessity of a probabilistic approach. Instead of “mini-
mum topographical unit” as such (V,,,, minimum area, etc.), it seems
to be much better to think of a set of such units at different probability
levels. In the near future our intention is to study such a set of “charac-
teristic volumes” carefully, and we hope that many “structural” or “pat-
tern” problems of biocenoses (e.g. homogeneity heterogeneity, ete.) can
be usefully approached in such a way.

IV.6 Beside the problem of V,y,, the question remains how to interpret
the ideal I'-like distribution of T]_\. showing in fig. 1, and the somewhat
surprising existence of V.

Concerning V ax, suppose that m — <. If all events (potential faunas)
are equiprobable, then, according to the Hartley formula, at a particular
sampling size, I = log m. In our data, of course, we can think only of a
“pelative maximum” at V . or, better, at an interval, V -range, V.
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The simplest way of explanation of V. is related to the values of
faunal valences (cf. 1I1.2), or more correctly, to the frequency distribu-
tions of them with respect to S,. («) It is clear that if the sampling volume is
“small”, then a few “small numbers” of the possible values (0—10) are
represented. For instance, in our U, (where V| is 2 ml.), there are only
three sorts of n.;, values (namely, 0, 1, 2) whose frequency distribution is:

J(n.o) = 17;  fln.y,) = 36; f(n.y,) = 11

(b) Similarly if the sampling volume is “large”, then, again, « Sfew “larger
numbers” of the possible values are permitted. We can guess, for instance,
that approaching V¢ more closely, the frequency of 10’s Lrows exponen-
tially. It is rather easy to see (although our present evidence is indirect)
that in both cases H-value is small, because our uncertainty with re-
spect to F.’s is rather small, too. Now, contrary to () and (b), (¢) there is
always an interval, where the opposite is true, since in that interval the
majority of faunal valence values may occur (see table 1), and, consequent-

ly, the corresponding value of H_ is rather high.

This is, of course, a very crude explanation of such a concept as V ax,
for obvious reason. Faunal valence is related only indirectly to combina-
tional relations (although, in the case of U, for instance, it can be defini-
tely stated that at most 56 events are permitted from 1024), and, there is
special sort of diversity (valential diversity of both types) not to be consi-
dered here. More precisely (but still in a rather indirect way) we can study
table 3, where the number of possible and empirical (“realized™) combina-
tional events are compared. Table 3 shows essentially the same relation-

Table 3

Number of possibie events D)
Sampling volume Numh:~r of realized cvent:
V1 1 6 8 0 0O 0O 0 0O 0 0 o0
V2 1 6 10 7 4 0 0 0 0 0 0
Vg 0 2 7 9 8 3 1 0 0 0 0
\’4 0 0 1 4 7 5 4 2 0 0 0
V5 0 1 L 2 & T T 8 1 0 0
VG 0O 0 0 o0 1 4 4 4 3 3 1
V7 O 0 0 0 0 0 1 3 5 4 1
Vg O 0 0 0 0 0 0 0 0 0 1

Table 3 Comparison beetween the numbers of possible and realized events (combinations).
Columns represent binomial coefficients, ( 5 ), where K is number of taxa in faunal universe

Q [cf. 11. 2, (3)], e is & possible value of a faunal valence, Ny (ef. 111. 2). An entry of the
table shows the number of empirically possible (permitted) events at a given sampling
volume (cf. 11. 3) and at a given value of e.
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ship as before concerning three (“small”, “mixed”, and “large”) range of
sampling sizes influencing uncertainty distribution. It is quite understand-
able, for instance, why M in size V; is (at least, empirically) at a maxi-
mum, since three sorts of combinational classes (where n.,, = 2, 3, 4) are
approximately equiprobable.

Of course, the only direct way of the interpretation of 11 is to study
the compound table of l, s. Unfortunately, because such a table consists of
8 X 1024 cells, this is t0o lengthy for the present publication. (It is very
easy to imagine that if a biotal universe has a cardinality more than 20,
which is surely “not too rich” a biota from a biological point of view,
all similar tables [from order 10°— ] are too voluminous for any publica-
tion.) This is the reason why H..is considered to be practically important.

IV.7 But its importance has a theoretical aspect, too. We believe
that the general trend of /1, discussed above is general enough (at least
in qualitative terms)of bem(r characteristic for all possible ()bjccts (e.g.all
biocenoses, or even any “ornamentation” of a finite set of symbols). ()ne
of us studied many types of terrestrial plant communities and obtained
results of the same type as it is shown by fig. 1, with “quantitative
modifications” of the particular object (Juhdsz-Nagy, 1967).

1V.8 In this paper we have attempted to outline the simplest problems
which represented the starting questions of our investigations. We had to
treat only a very restricted range of these problems, however, and by far
without a claim of entrirety. The cause of restrictions mentioned in I1.1
was our endeavour to attain the comparatively simplest approach owing
not only to temporal, couting and capacity delimitations but also for the
sake of a clearer view for future development.

IV.9 It is our pleasant duty to express our gratitude to Dr.J. Szab 6
(Zoology Dept., Debrecen Univ.) for study facilities, and toMr.Gy. Dezs &
agronomist, and Mr. F. P é t e r, fishery master, for their cordial help.

Y. Summary

In simple situation (II) and by a simple information theory model
system (ITL., IV.) we studied a new type of diversity (called faunal
diversity) and a spatial diversity process of this type whose “qualitative
trend” is shown by table 2 and fig 1. We believe that this trend is a very
general one (characteristic for all possible communities), with “quanti-
tative modifications” of the particular objects, moreover, that these
features can be analyzed is several ways and they are interconnected
with many other properties of synbiological phenomena.
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