5,425 research outputs found

    The comparative clinical course of pregnant and non-pregnant women hospitalised with influenza A(H1N1)pdm09 infection

    Get PDF
    Introduction: The Influenza Clinical Information Network (FLU-CIN) was established to gather detailed clinical and epidemiological information about patients with laboratory confirmed A(H1N1)pdm09 infection in UK hospitals. This report focuses on the clinical course and outcomes of infection in pregnancy.Methods: A standardised data extraction form was used to obtain detailed clinical information from hospital case notes and electronic records, for patients with PCR-confirmed A(H1N1)pdm09 infection admitted to 13 sentinel hospitals in five clinical 'hubs' and a further 62 non-sentinel hospitals, between 11th May 2009 and 31st January 2010.Outcomes were compared for pregnant and non-pregnant women aged 15-44 years, using univariate and multivariable techniques.Results: Of the 395 women aged 15-44 years, 82 (21%) were pregnant; 73 (89%) in the second or third trimester. Pregnant women were significantly less likely to exhibit severe respiratory distress at initial assessment (OR?=?0.49 (95% CI: 0.30-0.82)), require supplemental oxygen on admission (OR?=?0.40 (95% CI: 0.20-0.80)), or have underlying co-morbidities (p-trend <0.001). However, they were equally likely to be admitted to high dependency (Level 2) or intensive care (Level 3) and/or to die, after adjustment for potential confounders (adj. OR?=?0.93 (95% CI: 0.46-1.92). Of 11 pregnant women needing Level 2/3 care, 10 required mechanical ventilation and three died.Conclusions: Since the expected prevalence of pregnancy in the source population was 6%, our data suggest that pregnancy greatly increased the likelihood of hospital admission with A(H1N1)pdm09. Pregnant women were less likely than non-pregnant women to have respiratory distress on admission, but severe outcomes were equally likely in both groups

    Inaccessible Singularities in Toral Cosmology

    Get PDF
    The familiar Bang/Crunch singularities of classical cosmology have recently been augmented by new varieties: rips, sudden singularities, and so on. These tend to be associated with final states. Here we consider an alternative possibility for the initial state: a singularity which has the novel property of being inaccessible to physically well-defined probes. These singularities arise naturally in cosmologies with toral spatial sections.Comment: 10 pages, version to appear in Classical and Quantum Gravit

    Expansion-induced contribution to the precession of binary orbits

    Get PDF
    We point out the existence of new effects of global spacetime expansion on local binary systems. In addition to a possible change of orbital size, there is a contribution to the precession of elliptic orbits, to be added to the well-known general relativistic effect in static spacetimes, and the eccentricity can change. Our model calculations are done using geodesics in a McVittie metric, representing a localized system in an asymptotically Robertson-Walker spacetime; we give a few numerical estimates for that case, and indicate ways in which the model should be improved.Comment: revtex, 7 pages, no figures; revised for publication in Classical and Quantum Gravity, with minor changes in response to referees' comment

    WMAP-normalized Inflationary Model Predictions and the Search for Primordial Gravitational Waves with Direct Detection Experiments

    Get PDF
    In addition to density perturbations, inflationary models of the early universe generally predict a stochastic background of gravitational waves or tensor fluctuations. By making use of the inflationary flow approach for single field models and fitting the models with Monte-Carlo techniques to cosmic microwave background (CMB) data from the {\it Wilkinson Microwave Anisotropy Probe} (WMAP), we discuss the expected properties of the gravitational wave background from inflation at scales corresponding to direct detection experiments with laser interferometers in space. We complement the Monte-Carlo numerical calculations by including predictions expected under several classes of analytical inflationary models. We find that an improved version of {\it Big Bang Observer} (BBO-grand) can be used to detect a gravitational wave background at 0.1 Hz with a corresponding CMB tensor-to-scalar ratio above 104^{-4}. Even if the CMB tensor-to-scalar ratio were to be above 102^{-2}, we suggest that BBO-grand will be useful to study inflationary models as the standard version of BBO, with a sensitivity to a stochastic gravitational wave background ΩGWh2>1017\Omega_{\rm GW}h^2 > 10^{-17}, will only allow a marginal detection of the amplitude while leaving the tensor spectral index at 0.1 Hz unconstrained. We also discuss the extent to which CMB measurements can be used to predict the gravitational wave background amplitude in a direct detection experiment and how any measurement of the amplitude and the spectral tilt of the gravitational wave background at direct detection frequencies together with the CMB tensor-to-scalar ratio can be used to establish slow-roll inflation.Comment: 18 pages, 12 figures. Submitted to PRD. Low resolution figures submitted here. A copy with high resolution figures and software to generate numerical models can be obtained at http://www.cooray.org/inflation.htm

    Tube Model for Light-Front QCD

    Get PDF
    We propose the tube model as a first step in solving the bound state problem in light-front QCD. In this approach we neglect transverse variations of the fields, producing a model with 1+1 dimensional dynamics. We then solve the two, three, and four particle sectors of the model for the case of pure glue SU(3). We study convergence to the continuum limit and various properties of the spectrum.Comment: 29 page

    A case-control study of cryptorchidism and maternal hormone concentrations in early pregnancy.

    Get PDF
    Serum samples taken between 6 and 20 weeks of gestation were obtained from 28 mothers who gave birth to cryptorchid sons (cases) and from 108 control mothers. In comparison with controls the cases had 10% higher geometric mean oestradiol (95% CI -13% to +39%: P=0.42) and 10% lower geometric mean testosterone (95% CI -27% to +10%: P=0.30). Among the samples collected between 6 and 14 weeks of gestation geometric mean concentrations of oestradiol and testosterone were 5% lower (95% CI -32% to +31%: P=0.74) and 25% lower (95% CI -45% to +1%: P=0.06) respectively in cases than in controls. Among the samples collected between 15 and 20 weeks of gestation geometric mean concentrations of oestradiol and testosterone were 29% higher (95% CI -8% to +79%: P=0.14) and 21% higher (95% CI -8% to +60%: P=0.18) respectively in cases than in controls. The results do not support the hypothesis that cryptorchidism may be caused by high concentrations of oestradiol in the maternal blood during the first phase of testicular descent, but suggest that the possible association of cryptorchidism with low maternal testosterone during early gestation should be further investigated

    Use of small specimen creep data in component life management: a review

    Get PDF
    Small specimen creep testing techniques are novel mechanical test techniques that have been developed over the past 25 years. They mainly include the sub-size uniaxial test, the small punch creep test, the impression creep test, the small ring creep test and the two-bar creep test. This paper outlines the current methods in practice for data interpretation as well as the state-of-the-art procedures for conducting the tests. Case studies for the use of impression creep testing and material strength ranking of creep resistant steels are reviewed along with the requirement for the standardisation of the impression creep test method. A database of small specimen creep testing is required to prove the validity of the tests

    Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift

    Get PDF
    Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant Universe. Here, we model the spectral energy distributions (SEDs) of galaxies at z = 1.5--3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, LTIR/LUVL_{\text{TIR}}/L_{\text{UV}}) and UV slope (β\beta). We generalize the shape of the dust law with an empirical model, Aλ,δ=E(BV) kλ (λ/λV)δA_{\lambda,\delta}=E(B-V)\ k_\lambda\ (\lambda/\lambda_V)^\delta where kλk_\lambda is the dust law of Calzetti et al. (2000), and show that there exists a correlation between the color excess E(BV){E(B-V)} and tilt δ\delta with δ=(0.62±0.05)log(E(BV)){\delta=(0.62\pm0.05)\log(E(B-V))}+ (0.26 ± 0.02){(0.26~\pm~0.02)}. Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star-formation rate, or β\beta. The change in the dust law with color excess is consistent with a model where attenuation is caused by by scattering, a mixed star-dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher (z>3z>3) redshifts.Comment: 20 pages, 18 figures, resubmitted to Ap

    Semiclassical States in Quantum Cosmology: Bianchi I Coherent States

    Full text link
    We study coherent states for Bianchi type I cosmological models, as examples of semiclassical states for time-reparametrization invariant systems. This simple model allows us to study explicitly the relationship between exact semiclassical states in the kinematical Hilbert space and corresponding ones in the physical Hilbert space, which we construct here using the group averaging technique. We find that it is possible to construct good semiclassical physical states by such a procedure in this model; we also discuss the sense in which the original kinematical states may be a good approximation to the physical ones, and the situations in which this is the case. In addition, these models can be deparametrized in a natural way, and we study the effect of time evolution on an "intrinsic" coherent state in the reduced phase space, in order to estimate the time for this state to spread significantly.Comment: 21 pages, 1 figure; Version to be published in CQG; The discussion has been slightly reorganized, two references added, and some typos correcte

    The Temperature Scale of Metal-Rich M Giants Based on TiO Bands: Population Synthesis in the Near Infrared

    Get PDF
    We have computed a grid of high resolution synthetic spectra for cool stars (2500<Teff<6000 K) in the wavelength range 6000 -- 10200A, by employing an updated line list of atomic and molecular lines, together with state-of-the-art model atmospheres. As a by-product, by fitting TiO bandheads in spectra of well-known M giants, we have derived the electronic oscillator strengths of the TiO gamma prime, delta, epsilon and phi systems. The derived oscillator strenghts for the gamma prime, epsilon and phi systems differ from the laboratory and ab initio values found in the literature, but are consistent with the model atmospheres and line lists employed, resulting in a good match to the observed spectra of M giants of known parameters. The behavior of TiO bands as a function of the stellar parameters Teff, log g and [Fe/H] is presented and the use of TiO spectral indices in stellar population studies is discussed.Comment: ApJ accepted, 27 pages + 11 figures, AASLatex v4.
    corecore