870 research outputs found

    Estimation of Migration Flows: A Validation of Entropy Solutions

    Get PDF
    The collection of disaggregated data is in most economic areas an expensive as well as a time-consuming procedure. If real data could be replaced by estimations from data on a highly aggregated level, much effort could be saved. The entropy maximizing method can be used to estimate interregional migration flow matrices for the whole population or subgroups of the population, when the available data are in an aggregated form. This means estimating the elements of matrices in which individuals a reclassified according to two or more discrete variables. Matrices of this form are called contingency tables. In this paper we present the entropy-maximizing method and test its validity for different levels of data aggregation. The tests are carried out by means of information theory and the chi-square distribution. For the tests we have used data from two of the countries that produce disaggregated data, Sweden and Austria

    RTK: efficient rarefaction analysis of large datasets

    Get PDF
    Motivation: The rapidly expanding microbiomics field is generating increasingly larger datasets, characterizing the microbiota in diverse environments. Although classical numerical ecology methods provide a robust statistical framework for their analysis, software currently available is inadequate for large datasets and some computationally intensive tasks, like rarefaction and associated analysis. Results: Here we present a software package for rarefaction analysis of large count matrices, as well as estimation and visualization of diversity, richness and evenness. Our software is designed for ease of use, operating at least 7x faster than existing solutions, despite requiring 10x less memory. Availability and implementation: C ++ and R source code (GPL v.2) as well as binaries are available from https://github.com/hildebra/Rarefaction and from CRAN (https://cran.r-project.org/). Contact: [email protected], [email protected]

    proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes

    Get PDF
    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de

    Gut microbiota differs between children with inflammatory bowel disease and healthy siblings in taxonomic and functional composition: a metagenomic analysis

    Get PDF
    Current treatment for pediatric inflammatory bowel disease (IBD) patients is often ineffective, with serious side effects. Manipulating the gut microbiota via fecal microbiota transplantation (FMT) is an emerging treatment approach but remains controversial. We aimed to assess the composition of the fecal microbiome through a comparison of pediatric IBD patients to their healthy siblings, evaluating risks and prospects for FMT in this setting. A case-control (sibling) study was conducted analyzing fecal samples of six children with Crohn's disease (CD), six children with ulcerative colitis (UC) and 12 healthy siblings by metagenomic sequencing. In addition, lifetime antibiotic intake was retrospectively determined. Species richness and diversity were significantly reduced in UC patients compared with control [Mann-Whitney U-test false discovery rate (MWU FDR) = 0.011]. In UC, bacteria positively influencing gut homeostasis, e.g., Eubacterium rectale and Faecalibacterium prausnitzii, were significantly reduced in abundance (MWU FDR = 0.05). Known pathobionts like Escherichia coli were enriched in UC patients (MWU FDR = 0.084). Moreover, E. coli abundance correlated positively with that of several virulence genes (SCC > 0.65, FDR < 0.1). A shift toward antibiotic-resistant taxa in both IBD groups distinguished them from controls [MWU Benjamini-Hochberg-Yekutieli procedure (BY) FDR = 0.062 in UC, MWU BY FDR = 0.019 in CD). The collected results confirm a microbial dysbiosis in pediatric UC, and to a lesser extent in CD patients, replicating associations found previously using different methods. Taken together, these observations suggest microbiotal remodeling therapy from family donors, at least for children with UC, as a viable option.NEW & NOTEWORTHY In this sibling study, prior reports of microbial dysbiosis in IBD patients from 16S rRNA sequencing was verified using deep shotgun sequencing and augmented with insights into the abundance of bacterial virulence genes and bacterial antibiotic resistance determinants, seen against the background of data on the specific antibiotic intake of each of the study participants. The observed dysbiosis, which distinguishes patients from siblings, highlights such siblings as potential donors for microbiotal remodeling therapy in IBD

    MOCAT2: a metagenomic assembly, annotation and profiling framework

    Get PDF
    MOCAT2 is a software pipeline for metagenomic sequence assembly and gene prediction with novel features for taxonomic and functional abundance profiling. The automated generation and efficient annotation of non-redundant reference catalogs by propagating pre-computed assignments from 18 databases covering various functional categories allows for fast and comprehensive functional characterization of metagenomes. Availability and Implementation: MOCAT2 is implemented in Perl 5 and Python 2.7, designed for 64-bit UNIX systems and offers support for high-performance computer usage via LSF, PBS or SGE queuing systems; source code is freely available under the GPL3 license at http://mocat.embl.de. Contact: [email protected]

    Transposase-DNA complex structures reveal mechanisms for conjugative transposition of antibiotic resistance

    Get PDF
    Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes

    Role of surface roughness in hard x-ray emission from femtosecond laser produced copper plasmas

    Get PDF
    The hard x-ray emission in the energy range of 30-300 keV from copper plasmas produced by 100 fs, 806 nm laser pulses at intensities in the range of 1015−1016^{15}-10^{16} W cm−2^{-2} is investigated. We demonstrate that surface roughness of the targets overrides the role of polarization state in the coupling of light to the plasma. We further show that surface roughness has a significant role in enhancing the x-ray emission in the above mentioned energy range.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
    • …
    corecore