37 research outputs found

    Covalent grafting onto self-adhesive surfaces based on aryldiazonium salt seed layers

    Get PDF
    International audienceThe chemistry of aryldiazonium salts has been thoroughly used in recent years to graft in a very simple and robust way ultrathin polyphenylene-like films on a broad range of surfaces. We show here that the same chemistry can be used to obtain self-adhesive surfaces. This target was reached in a simple way by coating various surfaces with chemisorbed organic films containing active aryldiazonium salts. These self-adhesive surfaces are then put into contact with various species (molecules, polymers, nanoparticles, nanotubes, graphene flakes, etc.) that react either spontaneously or under activation with the immobilized aryldiazonium salts. Our self-adhesive surfaces were synthesized following a simple aqueous two-step protocol based on p-phenylenediamine diazotisation. The first diazotisation step results in the robust grafting of thin polyaminophenylene (PAP) layers onto the surface. The second diazotisation step changed the grafted PAP film into a poly-aryldiazonium polymer (PDP) film. The covalent grafting between those self-adhesive surfaces and the target species was achieved by direct contact or by immersion of the self-adhesive surfaces in solution. We present in this preliminary work the grafting of multi-wall carbon nanotubes (MWCNTs), flakes of highly oriented pyrolytic graphite (HOPG), various organic compounds and copper nanoparticles. We also tested these immobilized aryldiazonium salts as electropolymerization initiators for the grafting-to process

    Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    Get PDF
    Background: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3 % to 69 % in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants an
    corecore