685 research outputs found

    The Einstein 3-form G_a and its equivalent 1-form L_a in Riemann-Cartan space

    Get PDF
    The definition of the Einstein 3-form G_a is motivated by means of the contracted 2nd Bianchi identity. This definition involves at first the complete curvature 2-form. The 1-form L_a is defined via G_a = L^b \wedge #(o_b \wedge o_a). Here # denotes the Hodge-star, o_a the coframe, and \wedge the exterior product. The L_a is equivalent to the Einstein 3-form and represents a certain contraction of the curvature 2-form. A variational formula of Salgado on quadratic invariants of the L_a 1-form is discussed, generalized, and put into proper perspective.Comment: LaTeX, 13 Pages. To appear in Gen. Rel. Gra

    Let's talk about varying G

    Full text link
    It is possible that fundamental constants may not be constant at all. There is a generally accepted view that one can only talk about variations of dimensionless quantities, such as the fine structure constant αee2/4πϵ0c\alpha_{\rm e}\equiv e^2/4\pi\epsilon_0\hbar c. However, constraints on the strength of gravity tend to focus on G itself, which is problematic. We stress that G needs to be multiplied by the square of a mass, and hence, for example, one should be constraining αgGmp2/c\alpha_{\rm g}\equiv G m_{\rm p}^2/\hbar c, where mpm_{\rm p} is the proton mass. Failure to focus on such dimensionless quantities makes it difficult to interpret the physical dependence of constraints on the variation of G in many published studies. A thought experiment involving talking to observers in another universe about the values of physical constants may be useful for distinguishing what is genuinely measurable from what is merely part of our particular system of units.Comment: 6 pages, Gravity Research Foundation essa

    Another Non-segregated Blue Straggler Population in a Globular Cluster: the Case of NGC 2419

    Full text link
    We have used a combination of ACS-HST high-resolution and wide-field SUBARU data in order to study the Blue Straggler Star (BSS) population over the entire extension of the remote Galactic globular cluster NGC 2419. The BSS population presented here is among the largest ever observed in any stellar system, with more than 230 BSS in the brightest portion of the sequence. The radial distribution of the selected BSS is essentially the same as that of the other cluster stars. In this sense the BSS radial distribution is similar to that of omega Centauri and unlike that of all Galactic globular clusters studied to date, which have highly centrally segregated distributions and, in most cases, a pronounced upturn in the external regions. As in the case of omega Centauri, this evidence indicates that NGC 2419 is not yet relaxed even in the central regions. This observational fact is in agreement with estimated half-mass relaxation time, which is of the order of the cluster age.Comment: in press in the Ap

    Numerical Simulations of Globular Cluster Formation

    Get PDF
    We examine various physical processes associated with the formation of globular clusters by using the three-dimensional Smoothed Particle Hydrodynamics (SPH) code. Our code includes radiative cooling of gases, star formation, energy feedback from stars including stellar winds and supernovae, and chemical enrichment by stars. We assume that, in the collapsing galaxy, isothermal cold clouds form through thermal condensations and become proto-globular clouds. We calculate the size of proto-globular clouds by solving the linearized equations for perturbation. We compute the evolution of the inner region of the proto-cloud with our SPH code for various initial radius and initial composition of gases. When the initial gases contain no heavy elements, the evolution of proto-clouds sensitively depends on the initial radius. For a smaller initial radius, the initial star burst is so intense that the subsequent star formation occurs in the central regions to form a dense star cluster as massive as the globular cluster. When the initial gases contain some heavy elements, the metallicity of gases affects the evolution and the final stellar mass. If the initial radius of the proto-globular clouds was relatively large, the formation of a star cluster as massive as the globular clusters requires the initial metallicity as high as [Fe/H] 2\geq -2. The self-enrichment of heavy elements in the star cluster does not occur in all cases.Comment: Accpeted for publication in the ApJ. Correctiong errors in Table

    Black Holes with Weyl Charge and Non-Riemannian Waves

    Get PDF
    A simple modification to Einstein's theory of gravity in terms of a non-Riemannian connection is examined. A new tensor-variational approach yields field equations that possess a covariance similar to the gauge covariance of electromagnetism. These equations are shown to possess solutions analogous to those found in the Einstein-Maxwell system. In particular one finds gravi-electric and gravi-magnetic charges contributing to a spherically symmetric static Reissner-Nordstr\"om metric. Such Weyl ``charges'' provide a source for the non-Riemannian torsion and metric gradient fields instead of the electromagnetic field. The theory suggests that matter may be endowed with gravitational charges that couple to gravity in a manner analogous to electromagnetic couplings in an electromagnetic field. The nature of gravitational coupling to spinor matter in this theory is also investigated and a solution exhibiting a plane-symmetric gravitational metric wave coupled via non-Riemannian waves to a propagating spinor field is presented.Comment: 18 pages Plain Tex (No Figures), Classical and Quantum Gravit

    The surprising external upturn of the Blue Straggler radial distribution in M55

    Full text link
    By combining high-resolution HST and wide-field ground based observations, in ultraviolet and optical bands, we study the Blue Straggler Star (BSS) population of the low density galactic globular cluster M55 (NGC 6809) over its entire radial extent. The BSS projected radial distribution is found to be bimodal, with a central peak, a broad minimum at intermediate radii, and an upturn at large radii. Similar bimodal distributions have been found in other globular clusters (M3, 47 Tucanae, NGC 6752, M5), but the external upturn in M55 is the largest found to date. This might indicate a large fraction of primordial binaries in the outer regions of M55, which seems somehow in contrast with the relatively low (\sim 10%) binary fraction recently measured in the core of this cluster.Comment: in press on Ap

    New Path Equations in Absolute Parallelism Geometry

    Get PDF
    The Bazanski approach, for deriving the geodesic equations in Riemannian geometry, is generalized in the absolute parallelism geometry. As a consequence of this generalization three path equations are obtained. A striking feature in the derived equations is the appearance of a torsion term with a numerical coefficients that jumps by a step of one half from equation to another. This is tempting to speculate that the paths in absolute parallelism geometry might admit a quantum feature.Comment: 4 pages Latex file Journal Reference: Astrophysics and space science 228, 273, (1995

    Third order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    Full text link
    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third and higher order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations we take the comoving gauge. We discover that the third-order correction terms are of ϕv\phi_v-order higher than the second-order terms where ϕv\phi_v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential we have δΦ35ϕv\delta \Phi \sim {3 \over 5} \phi_v to the linear order. Therefore, the pure general relativistic effects are of varphivvarphi_v-order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear order gravitational potential perturbation strength. From the temperature anisotropy of cosmic microwave background we have δTT13δΦ15ϕv105{\delta T \over T} \sim {1 \over 3} \delta \Phi \sim {1 \over 5} \phi_v \sim 10^{-5}. Therefore, our present result reinforces our previous important practical implication that near current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near the horizon.Comment: 9 pages, no figur
    corecore