14,204 research outputs found

    Detection of lithium in nearby young late-M dwarfs

    Full text link
    Late M-type dwarfs in the solar neighborhood include a mixture of very low-mass stars and brown dwarfs which is difficult to disentangle due to the lack of constraints on their age such as trigonometric parallax, lithium detection and space velocity. We search for young brown dwarf candidates among a sample of 28 nearby late-M dwarfs with spectral types between M5.0 and M9.0, and we also search for debris disks around three of them. Based on theoretical models, we used the color I−JI-J, the JJ-band absolute magnitude and the detection of the Li I 6708 A˚\AA doublet line as a strong constraint to estimate masses and ages of our targets. For the search of debris disks, we observed three targets at submillimeter wavelength of 850 μ\mum. We report here the first clear detections of lithium absorption in four targets and a marginal detection in one target. Our mass estimates indicate that two of them are young brown dwarfs, two are young brown dwarf candidates and one is a young very low-mass star. The closest young field brown dwarf in our sample at only ∼\sim15 pc is an excellent benchmark for further studying physical properties of brown dwarfs in the range 100−-150 Myr. We did not detect any debris disks around three late-M dwarfs, and we estimated upper limits to the dust mass of debris disks around them.Comment: 10 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Analysis of Dialogical Argumentation via Finite State Machines

    Get PDF
    Dialogical argumentation is an important cognitive activity by which agents exchange arguments and counterarguments as part of some process such as discussion, debate, persuasion and negotiation. Whilst numerous formal systems have been proposed, there is a lack of frameworks for implementing and evaluating these proposals. First-order executable logic has been proposed as a general framework for specifying and analysing dialogical argumentation. In this paper, we investigate how we can implement systems for dialogical argumentation using propositional executable logic. Our approach is to present and evaluate an algorithm that generates a finite state machine that reflects a propositional executable logic specification for a dialogical argumentation together with an initial state. We also consider how the finite state machines can be analysed, with the minimax strategy being used as an illustration of the kinds of empirical analysis that can be undertaken.Comment: 10 page

    Early multi-wavelength emission from Gamma-ray Bursts: from Gamma-ray to X-ray

    Get PDF
    The study of the early high-energy emission from both long and short Gamma-ray bursts has been revolutionized by the Swift mission. The rapid response of Swift shows that the non-thermal X-ray emission transitions smoothly from the prompt phase into a decaying phase whatever the details of the light curve. The decay is often categorized by a steep-to-shallow transition suggesting that the prompt emission and the afterglow are two distinct emission components. In those GRBs with an initially steeply-decaying X-ray light curve we are probably seeing off-axis emission due to termination of intense central engine activity. This phase is usually followed, within the first hour, by a shallow decay, giving the appearance of a late emission hump. The late emission hump can last for up to a day, and hence, although faint, is energetically very significant. The energy emitted during the late emission hump is very likely due to the forward shock being constantly refreshed by either late central engine activity or less relativistic material emitted during the prompt phase. In other GRBs the early X-ray emission decays gradually following the prompt emission with no evidence for early temporal breaks, and in these bursts the emission may be dominated by classical afterglow emission from the external shock as the relativistic jet is slowed by interaction with the surrounding circum-burst medium. At least half of the GRBs observed by Swift also show erratic X-ray flaring behaviour, usually within the first few hours. The properties of the X-ray flares suggest that they are due to central engine activity. Overall, the observed wide variety of early high-energy phenomena pose a major challenge to GRB models.Comment: Accepted for publication in the New Journal of Physics focus issue on Gamma Ray Burst

    A J-band detection of the donor star in the dwarf nova OY Carinae, and an optical detection of its `iron curtain'

    Get PDF
    Purely photometric models can be used to determine the binary parameters of eclipsing cataclysmic variables with a high degree of precision. However, the photometric method relies on a number of assumptions, and to date there have been very few independent checks of this method in the literature. We present time-resolved spectroscopy of the P=90.9 min eclipsing cataclysmic variable OY Carinae obtained with X-shooter on the VLT, in which we detect the donor star from K I lines in the J-band. We measure the radial velocity amplitude of the donor star K2 = 470.0 +/- 2.7 km/s, consistent with predictions based upon the photometric method (470 +/- 7 km/s). Additionally, the spectra obtained in the UVB arm of X-shooter show a series of Fe I and Fe II lines with a phase and velocity consistent with an origin in the accretion disc. This is the first unambiguous detection at optical wavelengths of the `iron curtain' of disc material which has been previously reported to veil the white dwarf in this system. The velocities of these lines do not track the white dwarf, reflecting a distortion of the outer disc that we see also in Doppler images. This is evidence for considerable radial motion in the outer disk, at up to 90 km/s towards and away from the white dwarf.Comment: MNRAS accepted. 11 pages with 10 figures and 2 table

    Swift detects a remarkable gamma-ray burst, GRB 060614, that introduces a new classification scheme

    Get PDF
    Gamma ray bursts (GRBs) are known to come in two duration classes, separated at ~2 s. Long bursts originate from star forming regions in galaxies, have accompanying supernovae (SNe) when near enough to observe and are likely caused by massive-star collapsars. Recent observations show that short bursts originate in regions within their host galaxies with lower star formation rates consistent with binary neutron star (NS) or NS - black hole (BH) mergers. Moreover, although their hosts are predominantly nearby galaxies, no SNe have been so far associated with short GRBs. We report here on the bright, nearby GRB 060614 that does not fit in either class. Its ~102 s duration groups it with long GRBs, while its temporal lag and peak luminosity fall entirely within the short GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short GRBs. This combination of a long duration event without accompanying SN poses a challenge to both a collapsar and merging NS interpretation and opens the door on a new GRB classification scheme that straddles both long and short bursts.Comment: 13 pages, 2 figures, accepted in Natur

    Cultural and economic complementarities of spatial agglomeration in the British television broadcasting industry: Some explorations.

    Get PDF
    This paper considers the processes supporting agglomeration in the British television broadcasting industry. It compares and contrasts the insights offered by the cultural turn in geography and more conventionally economic approaches. It finds that culture and institutions are fundamental to the constitution of production and exchange relationships and also that they solve fundamental economic problems of coordinating resources under conditions of uncertainty and limited information. Processes at a range of spatial scales are important, from highly local to global, and conventional economics casts some light on which firms are most active and successful

    The planets around NN Serpentis : still there

    Get PDF
    We present 25 new eclipse times of the white dwarf binary NN Ser taken with the high-speed camera ULTRACAM on the William Herschel Telescope and New Technology Telescope, the RISE camera on the Liverpool Telescope and HAWK-I on the Very Large Telescope to test the two-planet model proposed to explain variations in its eclipse times measured over the last 25 yr. The planetary model survives the test with flying colours, correctly predicting a progressive lag in eclipse times of 36 s that has set in since 2010 compared to the previous 8 yr of precise times. Allowing both orbits to be eccentric, we find orbital periods of 7.9 ± 0.5 and 15.3 ± 0.3 yr, and masses of 2.3 ± 0.5 and 7.3 ± 0.3 MJ. We also find dynamically long-lived orbits consistent with the data, associated with 2:1 and 5:2 period ratios. The data scatter by 0.07 s relative to the best-fitting model, by some margin the most precise of any of the proposed eclipsing compact object planet hosts. Despite the high precision, degeneracy in the orbit fits prevents a significant measurement of a period change of the binary and of N-body effects. Finally, we point out a major flaw with a previous dynamical stability analysis of NN Ser, and by extension, with a number of analyses of similar systems

    Hunting For Eclipses: High Speed Observations of Cataclysmic Variables

    Get PDF
    We present new time-resolved photometry of 74 cataclysmic variables (CVs), 47 of which are eclipsing. 13 of these eclipsing systems are newly discovered. For all 47 eclipsing systems we show high cadence (1-20 seconds) light curves obtained with the high-speed cameras ultracam and ultraspec. We provide new or refined ephemerides, and supply mid-eclipse times for all observed eclipses. We assess the potential for light curve modelling of all 47 eclipsing systems to determine their system parameters, finding 20 systems which appear to be suitable for future study
    • …
    corecore