66,451 research outputs found

    Instantons and the singlet-coupling in the chiral quark model

    Full text link
    Chiral quark model with a broken-U(3) flavor symmetry can be interpreted as the effective theory of the instanton-dominated non-perturbative QCD. This naturally suggests the possibility of a negative singlet/octet coupling ratio, which has been found, in a previous publication, to be compatible with the phenomenological description of the nucleon spin-flavor structure.Comment: 9 page

    One-loop quantum corrections to cosmological scalar field potentials

    Full text link
    We study the loop corrections to potentials of complex or coupled real scalar fields used in cosmology to account for dark energy, dark matter or dark fluid. We show that the SUGRA quintessence and dark matter scalar field potentials are stable against the quantum fluctuations, and we propose solutions to the instability of the potentials of coupled quintessence and dark fluid scalar fields. We also find that a coupling to fermions is very restricted, unless this coupling has a structure which already exists in the scalar field potential or which can be compensated by higher order corrections. Finally, we study the influence of the curvature and kinetic term corrections.Comment: 11 pages, 1 figure, accepted for publication in Phys. Rev.

    As-built design specification for MISMAP

    Get PDF
    The MISMAP program, which is part of the CLASFYT package, is described. The program is designed to compare classification values with ground truth values for a segment and produce a comparison map and summary table

    Radiative lepton flavor violating decays in the Randall Sundrum background with localized leptons

    Get PDF
    We study the radiative lepton flavor violating l_i -> l_j\gamma decays in the two Higgs doublet model, respecting the Randall Sundrum scenario and estimate the contributions of the KK modes of left (right) handed charged lepton doublets (singlets) on the branching ratios. We observe that the branching ratios are sensitive to the contributions of the charged lepton KK modes.Comment: 23 pages, 10 figures, 2 table

    When renormalizability is not sufficient: Coulomb problem for vector bosons

    Get PDF
    The Coulomb problem for vector bosons W incorporates a known difficulty; the boson falls on the center. In QED the fermion vacuum polarization produces a barrier at small distances which solves the problem. In a renormalizable SU(2) theory containing vector triplet (W^+,W^-,gamma) and a heavy fermion doublet F with mass M the W^- falls on F^+, to distances r ~ 1/M, where M can be made arbitrary large. To prevent the collapse the theory needs additional light fermions, which switch the ultraviolet behavior of the theory from the asymptotic freedom to the Landau pole. Similar situation can take place in the Standard Model. Thus, the renormalizability of a theory is not sufficient to guarantee a reasonable behavior at small distances for non-perturbative problems, such as a bound state problem.Comment: Four page

    Strength distribution of repeatedly broken chains

    Full text link
    We determine the probability distribution of the breaking strength for chains of N links, which have been produced by repeatedly breaking a very long chain.Comment: 4 pages, 1 figur

    Probing the SUSY breaking scale at an e−e−e^-e^- collider

    Get PDF
    If supersymmetry is spontaneously at a low energy scale then the resulting gravitino would be very light. The interaction strength of the longitudinal components of such a light gravitino to electron-selectron pair then becomes comparable to that of electroweak interactions. Such a light gravitino could modify the cross-section for e^_L e^_R-->\tilde {e}_L\tilde {e}_R from its MSSM value. Precision measurement of this cross-section could therefore be used to probe the low energy SUSY breaking scale.Comment: Plain Tex, 7 pages, No figure

    The Additional Symmetries for the BTL and CTL Hierarchies

    Full text link
    The Toda lattice (TL) hierarchy was first introduced by K.Ueno and K.Takasaki in \cite{uenotaksasai} to generalize the Toda lattice equations\cite{toda}. Along the work of E. Date, M. Jimbo, M. Kashiwara and T. Miwa \cite{DJKM} on the KP hierarchy, K.Ueno and K.Takasaki in \cite{uenotaksasai} develop the theory for the TL hierarchy: its algebraic structure, the linearization, the bilinear identity, τ\tau function and so on. Also the analogues of the B and C types for the TL hierarchy, i.e. the BTL and CTL hierarchies, are considered in \cite{uenotaksasai}, which are corresponding to infinite dimensional Lie algebras o(∞)\textmd{o}(\infty) and sp(∞)\textmd{sp}(\infty) respectively. In this paper, we will focus on the study of the additional symmetries for the BTL and CTL hierarchies.Comment: 13 page

    Equation of State for physical quark masses

    Full text link
    We calculate the QCD equation of state for temperatures corresponding to the transition region with physical mass values for two degenerate light quark flavors and a strange quark using an improved staggered fermion action (p4-action) on lattices with temporal extent N_tau=8. We compare our results with previous calculations performed at twice larger values of the light quark masses as well as with results obtained from a resonance gas model calculation. We also discuss the deconfining and chiral aspects of the QCD transition in terms of renormalized Polyakov loop, strangeness fluctuations and subtracted chiral condensate. We show that compared to the calculations performed at twice larger value of the light quark mass the transition region shifts by about 5 MeV toward smaller temperaturesComment: 7 pages, LaTeX, 6 figures; minor corrections, typos corrected, references adde
    • …
    corecore