The Coulomb problem for vector bosons W incorporates a known difficulty; the
boson falls on the center. In QED the fermion vacuum polarization produces a
barrier at small distances which solves the problem. In a renormalizable SU(2)
theory containing vector triplet (W^+,W^-,gamma) and a heavy fermion doublet F
with mass M the W^- falls on F^+, to distances r ~ 1/M, where M can be made
arbitrary large. To prevent the collapse the theory needs additional light
fermions, which switch the ultraviolet behavior of the theory from the
asymptotic freedom to the Landau pole. Similar situation can take place in the
Standard Model. Thus, the renormalizability of a theory is not sufficient to
guarantee a reasonable behavior at small distances for non-perturbative
problems, such as a bound state problem.Comment: Four page