5,286 research outputs found

    Mass fractionation of the lunar surface by solar wind sputtering

    Get PDF
    The sputtering of the lunar surface by the solar wind is examined as a possible mechanism of mass fractionation. Simple arguments based on current theories of sputtering and the ballistics of the sputtered atoms suggest that most ejected atoms will have sufficiently high energy to escape lunar gravity. However, the fraction of atoms which falls back to the surface is enriched in the heavier atomic components relative to the lighter ones. This material is incorporated into the heavily radiation-damaged outer surfaces of grains where it is subject to resputtering. Over the course of several hundred years an equilibrium surface layer, enriched in heavier atoms, is found to form. The dependence of the calculated results upon the sputtering rate and on the details of the energy spectrum of sputtered particles is investigated. It is concluded that mass fractionation by solar wind sputtering is likely to be an important phenomenon on the lunar surface

    Stochastic Gene Expression in a Lentiviral Positive Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity

    Get PDF
    Stochastic gene expression has been implicated in a variety of cellular processes, including cell differentiation and disease. In this issue of Cell, Weinberger et al. (2005) take an integrated computational-experimental approach to study the Tat transactivation feedback loop in HIV-1 and show that fluctuations in a key regulator, Tat, can result in a phenotypic bifurcation. This phenomenon is observed in an isogenic population where individual cells display two distinct expression states corresponding to latent and productive infection by HIV-1. These findings demonstrate the importance of stochastic gene expression in molecular "decision-making."Comment: Supplemental data available as q-bio.MN/060800

    Separable Structure of Many-Body Ground-State Wave Function

    Full text link
    We have investigated a general structure of the ground-state wave function for the Schr\"odinger equation for NN identical interacting particles (bosons or fermions) confined in a harmonic anisotropic trap in the limit of large NN. It is shown that the ground-state wave function can be written in a separable form. As an example of its applications, this form is used to obtain the ground-state wave function describing collective dynamics for NN trapped bosons interacting via contact forces.Comment: J. Phys. B: At. Mol. Opt. Phys. 33 (2000) (accepted for publication

    Optical scalars in spherical spacetimes

    Get PDF
    Consider a spherically symmetric spacelike slice through a spherically symmetric spacetime. One can derive a universal bound for the optical scalars on any such slice. The only requirement is that the matter sources satisfy the dominant energy condition and that the slice be asymptotically flat and regular at the origin. This bound can be used to derive new conditions for the formation of apparent horizons. The bounds hold even when the matter has a distribution on a shell or blows up at the origin so as to give a conical singularity

    Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost

    Get PDF
    Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene (~3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming

    Just how long can you live in a black hole and what can be done about it?

    Get PDF
    We study the problem of how long a journey within a black hole can last. Based on our observations, we make two conjectures. First, for observers that have entered a black hole from an asymptotic region, we conjecture that the length of their journey within is bounded by a multiple of the future asymptotic ``size'' of the black hole, provided the spacetime is globally hyperbolic and satisfies the dominant-energy and non-negative-pressures conditions. Second, for spacetimes with R3{\Bbb R}^3 Cauchy surfaces (or an appropriate generalization thereof) and satisfying the dominant energy and non-negative-pressures conditions, we conjecture that the length of a journey anywhere within a black hole is again bounded, although here the bound requires a knowledge of the initial data for the gravitational field on a Cauchy surface. We prove these conjectures in the spherically symmetric case. We also prove that there is an upper bound on the lifetimes of observers lying ``deep within'' a black hole, provided the spacetime satisfies the timelike-convergence condition and possesses a maximal Cauchy surface. Further, we investigate whether one can increase the lifetime of an observer that has entered a black hole, e.g., by throwing additional matter into the hole. Lastly, in an appendix, we prove that the surface area AA of the event horizon of a black hole in a spherically symmetric spacetime with ADM mass MADMM_{\text{ADM}} is always bounded by A≤16πMADM2A \le 16\pi M_{\text{ADM}}^2, provided that future null infinity is complete and the spacetime is globally hyperbolic and satisfies the dominant-energy condition.Comment: 20 pages, REVTeX 3.0, 6 figures included, self-unpackin

    A Continuum Description of Rarefied Gas Dynamics (I)--- Derivation From Kinetic Theory

    Full text link
    We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulae at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process-dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.Comment: 16 page

    Seed Treatment for Corn Diseases

    Get PDF
    In Iowa three destructive corn diseases attack the seed, namely, Dfplc·dfa dry rot, Baslsporlum dry rot and Gibberella dry rot. These dry rots are best known on the ear, but also may attack any part of the plant, lncluding the seed and seedling. The Injury to the seed and to the subsequent yield has been measured during the last six years in 25 counties and found to average 5 bushels per acre. These dry rot organisms llve over on the old stubble In the soil and on the seed and attack the next season\u27s crop

    Evolution of an ancient protein function involved in organized multicellularity in animals.

    Get PDF
    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals
    • …
    corecore