@ https://ntrs.nasa.gov/search.jsp?R=19760024031 2020-03-22T12:54:53+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



Mass Fractionation of the Lunar Surface

*
by Solar Wind Sputtering

Z. E. SWITKOWSKI' and P. K. HAFF¥

The Niels Bohr Institute, DK-2100 Copenhagen , Denmark

T. A, TOMBRELLO and D. S. BURNETT

California Institute of Technology, Pasadena, California 91125, U.S.A.

(NASA-CE=-148779) MASS FRACTIONATION OF THE N76-31119

LUNAR SURFACE BY SOLAR WIND SPUTTERING

i nis t. of Tech. 32 p HC $4.00
(California Ins ) om0 3n tnclas

G3/91 01784

* ‘
Supported in part by the National Science Foundation [PHY76-02724] and
the National Aeronautics and Space Administration [NGR 05-002-333].

+Present address: School of Physics, University of Melbourne,

Parkville 3052, Australia,

*present address: Wright Nuclear Structure Laboratory, Yale University,

New Haven, Connecticut 06520, U.S.A. ' Py
’ ’ : \',\v“%?.] 22&3’(}, .
. 5:: g

SEP 1976

REGENED
NASA ST
INPUT E

A N
AN &3
£ Leseb

LI
ERRFRTRS AP




ABSTRACT

The sputtering of the lunar surface by the solar wind is examined
as a possible mechanism of mass fractionation. Simple arguments
based on current theories of sputtering and the ballistics of the
sputtered atoms suggest that most ejected atoms will have sufficiently
high energy to escape lunar gravity. However, the fraction of atoms
which falls back to the surface is enriched in the heavier atomic
components relative to the lighter ones. This material is incorpo-
rated into the heavily radiation-damaged outer surfaces of grains
where it is subject to resputtering. Over the course of several
hundred years an equilibrium surface layer, enriched in heavier atoms,
is found to form. Calculations predict that 6(180) ~ +20 °/o0 ~ S(SOSi)
and that oxygen will be depleted in the wuter regions of grains rela-
tive to the bulk composition. These results are in reasonable agree-
ment with experiment. The dependence of the calculated results upon
the sputtering rate and on the details of the energy spectrum of
sputtered particles is investigated. We conclude that mass fractiona-
tion by solar wind sputtering is likely to be an important phenomenon

on the lunar surface,



1. INTRODUCTION

The bombardment of the moon by the solar wind has long been recognized
as an important erosive mechanism of the surface layers of lunar material.

The pioneering experiments of Wehner et al. [1963a], who irradiated metal,

metal oxide and mineral targets with low energy hydrogen and helium ioms, i
led to the conclusion that sputtering would eject from the moon a substan-
tial amount of matter (approximately at the rate of 0.4 A°/yr) into space
with a distribution of velocities sufficiently high that most of this material
would escape lunar gravity. Additional investigations by this group [Wehner
et al., 1963b] of the behavior of metal oxides under simulated solar wind
irradiation conditions suggested that sputtering would lead to mass fraction-
ation of the lunar surface, with heavier mass elements being preferentially
enriched relative to lighter elements. Such a conclusion was based upon the
experimental observation that heavy atoms were ejected with lower velocities o
than lighter atoms and that, for the casef certain metal oxides, the surface
of the target became enriched in the heavier metal following prolonged ir-
radiation.
There is now considerable experimental evidence demonstrating that the

surfaces of lunar soil grains are enriched in the heavier isotopes of oxygen

and silicon [Epstein and Taylor, 1971, 1972, 1975; Taylor and Epstein, 1973]

as well as indications that the surface Si/0 ratio is enhanced relative to -

the bulk composition [Epstein and Taylor, 1971, 1972; Taylor and Epstein,

1973]. A detailed explanation of these surface correlated effects has not
been forthcoming. Nevertheless, it seems clear that since the bulk isotopic
abundances in lunar samples are rather constant and similar to terrestrial

minerals, surface effects have arisen from dynamic processing by agents




unique to the moon's environment. In this context, several authors have
recognized that solar wind sputtering could give rise to effects qualitatively

similar to those observed [Epstein and Taylor, 1971; Housley et al., 1974].

In this paper we present a solar wind sputtering process which could
produce mass fractionation of the lunar surface. Most of the material ejected
by sputtering escapes the moon's gravity, but some returning matter settles
back onto the surface. This material, which is somewhat richer in heavier
atoms than the starting surface, is incorporated into the heavily radiation-
dairaged outer surfaces of grains where it remains subject to resputtering.
Within this model, calculations are presented which show that an equilibrium
surface layer, with a level of isotopic fractionation rather close to that
observed experimentally, is produced on grains on a time scale shorter than
the typical surface residence time. In the following sections the details
of the model are described in which the well known results of sputtering
theory together with the ballistics of the ejected particles are combined

tr give rise naturally to a mass selecting process.

2. DETAILS OF THE PROCESS OF FRACTIONATIONM

When a beam of ions in the laboratory strikes a solid, an interatomic
cascade of particles is initiated [Sigmund, 1969]. Sputtering occurs when
some of these moving atoms escape through a nearby surface. Sputtering is
therefore expected to occur on the lunar surface as a result of bombardment

by solar wind protons and alpha particles [Maurette and Price, 1975].

There is an important difference, however, between the conditions of a
terrestrial sputtering experiment and those encountered on the moon. 1In
the former case, all the sputtered target material is typically collected

on a catcher foil or octherwise permaneritly separated from the target, except



for the usually small component of ionized atoms whose trajectories may be
influenced by applied electric and magnetic fields. On the moon, gravita-
tional forces are an important consideration: since the energies of ejected
atoms are on the order of the energy required to escape lunar gravity, some
atoms escape into space, while others fall back to the lunar surface. Since, |
at the same energy, the heavier of two particles has the lower velocity, there
ought to be a natural winnowing mechanism operating on material tossed up
from the moon by the solar wind, The fraction of sputtered material which
returns to the lunar surface will be enriched in the heavier elements and
isotopes, relative to their abundances in the undisturbed material. These
returned atoms are, of course, subject to resputtering. However, the atomic
mixing of the surface region by the solar wind will blend some of this en-~
riched matter into the undifferentiated substrate. Consequently, after a
sufficiently long time has elapsed, a thin enriched layer will exist in an
equilibrium condition determined by the balance between atoms lost to outer -
space, atoms recovered from fall-back, and atoms gained from the admixed
: o
subsurface material. Such a dynamic situation is depicted in Figure 1.

The exact thickness of this enriched layer is uncertain. Rather wide

limits on this depth, Ax, may be inferred from, on the one hand, the immediate

depth of the sites from which the sputtered atoms are ejected (probably exX-

tending down to a few monolayers, of ~ 10 A° [Sigmund, 1969; Ishitani and .
Shimizu, 1975]) to, on the other hand, the measured depth of the heavily
radiation-damaged region of the surfaces of dust grains (~ 200-500 A° [Borg

et al., 1971]). Probably the penetration depth of solar wind protons which

is ~ 100 A° provides a reasonable estimate for Ax. Such a value is consistent

with computer simulatiqn calculations of atomic mixing [Ishitani and Shimizu,

1975]. There is also experimental support for the idea of radiation-induced



mixing in the work of Mertens [1975] who studied the sputtering of a 200 A°
Cu-film deposited on Al. During bombardment with a 250-keV Ar beam (whose

range [Lindhard et al., 1963] in Cu is ~ 1400 Ao) a zone quickly developed

about the two metal interface where the metals were well mixed over a region
thicker than ~ 200 A°, The use of a thicker Cu coating or lower Ar-beam
energies might well have exposed a mixing depth that was much closer to the

range of the incident beam. Similarly, Zinner et al. (1976) report distor-

tions in implanted ion depth profiles produced by the analyzing ion beam of
an ion microprobe. This undoubtedly represents the first stage in the above

mixing process.

In order to arrive at a quantitative analysis of mass fractionation
we need to know, in addition to the depth, Ax, over which solar protons can
effectively shuffle atoms, the sputtering rate applicable to the lunar environ-

ment and the energy distribution of the sputtered particles.

3. THEORY

A. Two component surface. Let us start with the simple picture of

a moon consisting of only two elements, Si and O present as
their most abundant isotopes in the chemical form 8102. (This assumption
will be relaxed in Section 3B.) Within this scenario, expressions shall be
derived for the evolution of the surface enrichment of Si relative to O and
" then extended to calculations of isotopic effects. It is useful to define
the following quantities:
n, = the normalized starting atomic abundance at the lunar surface of the

element whose mass number is i. Thus n . = 2/3, n,, = 1/3.

28

Ni(t) = fractional abundance of atoms of species i after a time t of

bombardment by the solar wind; N, (0) = n,.

=a



S = sputtering rate constant, defined as the probability that an atom
within Ax will be sputtered from the surface in one year, i.e., sputtering
erosion rate in angstroms per year = SAx. Although S may in principle depend
(initially) upon the time t, we take its value to be constant. Any time
variation of S would lead to changes in the estimates of equilibration times,
but would not affect general considerations of the equilibrium state with
which we are mainly concerned. The probability that an atom‘of species 1 1is

sputtered from Ax in one year is then in lowest approximation NiS.

fi = fraction of sputtered atoms i which falls back to the lunar surface.
This quantity is expressed below in‘terms of the energy spectrum of sputtered
particles and the lunar escape energy.

We can determine N16(t) and N28(t) in the following manner. Consider the
surface layer Ax. With time atoms are sputtered away. Some fall back and new
unfractionated material is introduced into the active region from the interior
side of the layer. We require that the total number of atoms comprising this
active region should be constant. As the eventual enrichments are small on an
absolute scale, there is no serious problem regarding the slightly varying mass
of this volume. An equation describing the amount by which the fractionation of

oxygen atoms in Ax at time (t+ At) differs from that present at t is given by

N16(t + At) - ng(t) = - le(t) s at + £, N16(t) S At

+ 1m0 (1-f16) ng(t) S At + ny, (1-f28) N28(t) S At. (1)

The first term on the RHS of (1) represents the total amount of O sputtered

from Ax in time At and the second term reflects the amount of O which returned
to the surface having failed to escape lunar gravity. The difference in these
two terms, (1-f16) N16(t> S At is then the net loss from Ax of the O component

through sputtering. In order to conserve the number of atoms in Ax,



fresh material is mixed in from the reservoir of atoms within the grain in
stoichiometric proportions. The filling of O 'vacancies' by O atoms is given
by the third term while the last term represent the filling of Si 'vacancies'

by underlying O atoms.

Relation (1) is equivalent to the differential equation

2}%@ = - N (£) 7 + ¢ ’ (2)
where
y =8 [n28 (1-f16) + g (1"f28)J (3)
and
Cig = 8 nye (L-£55) (%)
with the solutionm,
Nig(e) = (myg-Cpe/7) 7" + cppfy. (s)

An analogous equation pertains to Nge(t)' In arriving at Equations (3)-(5)
we have used the fact that le(t) + N28(t) =1,
The time constant for approach to equilibrium, Teq’ is 7-1. For

t>T the equilibrium condition obtains

eq’
nyg (1-£5g)
nog t1-£15) + g (1-1E50)

. (6)

Nigleo) = Cyg/7 =

The ratio 016/7 does not depend upon the value of S5 and therefore the equi-~
librium concentrations do not depend upon the absolute rate at which particles
are sputtered away.

The equilibrium concentration is also independent of the thickness Ax of
the active surface layer. The sputtering factor S does appear in the argument

of the exponential in (5) and determines how fast the steady state condition is



approached. Referring to the definition of S in terms of Ax, we see that the
calculated equilibration time will depend on the thickness of the layer Ax,
with a larger thickness requiring a longer time to reach steady state.

In order to proceed, we need to know the energy spectrum of sputtered
particles. In the absence of experimental data pertinent to the case under
consideration, we must introduce a sputtering theory which will then allow

calculation of fi' A frequently used energy spectrum of sputtered particles,

derived by Thompson [1968], has the form

%o
B (1+ U/E)5

o(E) = (7)

where % is a constant and U is a surface binding energy for the material

under bombardment., The behavior of ¢(E) at low energies goes as
o(E) ~ E for E << U , (8)

and at high energies

o(E) ~ l/E2 for E >>U . (9)

¢(E) peaks at an energy of U/2. Values of U are typically a few eV for
oxides [Kelly and Lam, 1973] and we shall return later to a discussion of
the value of U appropriate to heavily radiation-damaged mineral grain
surfaces. For the purposes of illustration, an energy spectrum calculated
for U = 1 eV is shown in Figure 2.

Now, the fraction fi of sputtered atoms 1 which does not escape from

the moon is given by




" ¢(E) dE

£, = (10)
j; o(E) dE

= (1 + %)-2 = (1 + m:_:“]gR)-2 (11)

where ei is the lunar escape energy of element of mass m, . R and g are the
lunar radius and gravitational acceleration. From (6) and (11) it is possible
to calculate values for the equilibrium concentration of Si and O with the

appropriate value of U,

B, Multi-component surface., Having developed the formalism for

differentiation of a two component surface, it is now useful to generalize
the theory to the case of a homogeneous multi-component medium that would
be a more realistic approximation to the composition of the lunar surface.
It will then be possible to assess the effects of sputtering on isotopic
enrichment as well as the effects on arbitrary pairs of elements.

Consider the case of a lunar surface composed of k different atomic
species, If we label each constituent by a subscript ranging from 1 .... k,
then after the surface has reached equilibrium, the abundance N, of species 1

1

within Ax will satisfy the equation
N, =N £+ ngN (1- fl) + m N, (1- £,) + --- nN, (1- fk) . (12)

The first term on the right-hand side is the number of sputtered atoms of species 1
which returns, and the subsequent terms reflect the filling of the species i,

i= 1’... k, vacancies by species 1. Equation (12) may then be rewritten as

v



N

k
1 2 :
;;[ (1~ fl) = Ni (1-—fi) = constant (15)

since the summation covers all surface components. Since there is nothing

special about the choice of species 1 above, we have in general

Ni/ni 1-¢£,
N.Jn., ~1-f ° (14)
31

In terms of the conventional definition for & in representing isotopic

enrichments, relative to some arbitrary laboratory standard, (ni/nj)oz
N./N,
8= -1 (15)
= (n,/n, :
i 730

Combining (14) and (15) leads to

1+ ssurf Nl/N (1- £, ) (169

1+08, .. Bpulk ni7nJ (1 5

A somewhat more natural quantity for expressing surface correlated isotopic

and elemental enrichments is defined by the equation

(1/3) mNi/NJ’ R (17)
e(i/3) = - l=—d 7
ny/n, 1 - fi ’

for any two species i and j. Equation (17) makes a direct comparison between
surface and bulk concentrations;“without reference to an arbitrary standard.
In practice, ¢ and d differ by no more than about 5 O/oo (for oxygen), and

it will be convenient to make use of both definitions. Note that the final

expression in (17) is also the form that would have been derived for the



simpler two component case by using (3), (4), (6). This then shows that the
fractionation of the material proceeds in a manner which is independent of

the detailed composition of the medium. If the increasing complexity of the
medium is not accompanied by any modification to the energy spectrum of sput-
tered particles then the relative equilibrium enrichments of any two elements

within a medium of arbitrary composition will remain the same. f

Y, EQUILIBRATION TIME

It is now possible to compute elemental and isotopic enrichments.
Before considering the equilibrium results, it is interesting to examine in
more detail the time scale involved for achieving equilibrium. For the sake
of illustration we consider the case of §i0, described by (5). In general,
equilibration times will depend upon the detailed composition of the medium.
However, this dependence is expected to be rather weak and uncertainties in
the values of the parameters entering the theory are likely to be more signifi- -

cant than the differences between the results for a two component surface and

that appropriate to a more complex surface,

It is now necessary to specify values for U and S, There exists no
measurement of U for heavily radiation-damaged minerals of the kind found

on the lunar surface. Experiments [Kelly and Lam, 1973] have pointed to a

value of L eV for Si02 but this is likely to be significantly higher than
the value appropriate to grain surfaces where extensive radiation damage

has disrupted the atomic bonding. We expect that the effective binding
energy may decrease with increasing solar wind irradiation. For the purposes

of estimating the equilibration time we take silicon and oxygen both to be

characterized by U = 1 eV, so that their energy spectra are the same. Noting

10



that the lunar escape energies are: €. = 0.467 eV and €og = 0.818 eV, (11)
then gives that £, = 0.101 and f,g = 0.202 (this factor of 2 being coin-

cidental), Taking Ax = 100 A° and the currently accepted sputtering erosion

rate by solar wind sputtering of 0.5 Ao/yr [Borg et al., 1974] then gives
S = 0.5/100 = 5 x 107> yr~L .

From (3) we obtain

T = 240 yrs.
eq

We note that arbitrarily increasing U will reduce Teq down to only 1/S or
200 yrs, whereas for values of U as small as 0.2 eV, Teq = 190 yrs,
These magnitudes are probably short compared to the total time most
lunar dust grains are exposed to the solar wind [see, for example, Poupeau
et al., 1975] so that it is likely that this process of fractionation nusually

reaches equilibrium.

5. COMPARISON OF RESULTS WITH EXPERIMENTAL DATA

We now calculate enrichment effects for the isctopes of 0, Si, and S.

Assuming U = 1 eV, we obtain f16 = 0.101, f18 = 0.119, f28 = 0.202, f30 =

0.218, f£,, = 0.233, and f; =0.248. These values lead to the following

surface heavy isotope enrichments,

5( ) = 25 °/00 ,

i

5(°%1)

18 o/oo ’
and

5(%s) = 21 °/oo

where we have used (16) and the values Sbulk(lao) = +5°%/o0, Sbulk(SOSi) =

-20/00, and abulk(SMS) =-+O.5°/oo. The approximate constancy of the sur-

11




face d-values is a consequence of assuming U = 1 eV (see discussion of
Fig. 4).
In their analysis of isotopic concentrations in the surfaces of lunar

grains, Epstein and Taylor [1971, 1972, 1973, 1975] chemically etched lunar

soils with brief exposures to F2 gas and monitored the isotopic enrichment

as a function of the amount of oxygen removed from the grains. With respect
to the Si and O isotopes they found strong surface enhancements of the
heavier isotopes with isotope ratios approaching the bulk values once approxi-
mately 1% of the mass of the grains had been removed. Noting that measure-
ments of specific surface area in submillimeter lunar fines range from 0.1

to 1 m2/g [Cadenhead et al., 1972, Holmes et al., 1973] we have assumed an

average grain diameter of 10 p so that the measurements of Epstein and Taylor
define a surface layer less than 170 A° thick in which there was appreciable
isotopic fractionation. 6(180) and 5(5081) were found to vary quickly within

this layer. There is no provision within our model for the evaluation of the

shape of the isotopic distribution. However, since the first cut of these
fluorination 'stripping' experiments probably sampled an average depth of

~ 40 A° and the enrichment effects were much diluted for depths greater than
~ 100 A° (i.e., a depth =~ Ax), it is reasonable to compare the model predic-
tions to the enrichments measured right at the grain surfaces. Experiment-
ally, 8(180) was found to range up to ~ 50 °/oo and 5(3081) up to = 25 %/o0
in the fluorination fractions. The results of our calculations are therefore

in rather good accord with their data.

While the measured isotopic envichment for O is more pronounced by a
factor of 2 than for the Si isotopes in contrast to our calculations, we

caution that it is already a significant achievement of the mecdel to account

12




rather quantitatively for the experimental observations with the use of
plausible but conservative estimates for parameters which are not well
determined by independent experiments. In fact, there are several features
noted briefly above which prohibit comparison beyond the order of magnitude
level. As experiments are performed on a distribution of grain sizes, un-
certainties exist in the conversion of gas fraction of oxygen removed to an
equivalent depth of surface layer. Furthermore, within any given sample,
individual grains will not reflect identical composition or history. Addi-
tionally, the depth dependence of the enrichment factors probably reflects

a complex gardening of the surface by atomic projectiles as well as some
diffusion of the surface species. This process is quite likely a complicated
one which does not lend itself to any plausible but straightforward description ;
and the assumption of a well-defined active layer, Ax deep, is only a rough
approximation. However, as noted earlier, the equilibrium concentration with-

in Ax does not depend upon the choice of this depth.

Equation (11) shows that the fraction of sputtered atoms returning
is not linear in mass; however, because of the small fractionations involved
in 5(180)/5(170), we calculate this rati? to be 2 in accord with the general
expectation for a physical isotope separation process as well as with the

measurements of Clayton et al. [1974].

Epstein and Taylor note also that total oxygen is depleted by ~ 4ot
relative to Si in the first cuté of the fluorination stripping. Qualitatively
similar effects in the outermost atomic layers have been observed by Housley
et al. [1976] using ESCA techniques., In an analogous manner as the isotopic
variations, it is interesting to compare with the amcunt of oxygen depletion
caused by sputtering, which is calculated to be 12.5%. Because the experi-

mental measurement may apply to a thinner layer than the calculated depletion,

13



it seems that the Si/O data might provide further support for the fractionation
mechanism proposed here,

Rees and Thode [1974] have used S isotopic analyses of grain-sized

fractions to estimate a surface 5(548) enrichment of about 20 o/oo, in agreement
with our calculations.

Relatively large 59K/LLIK depletions have been reported for bulk soil
samples (5-10 o/oo) but these do not appear to be surface correlated [Barnes

et al., 1973, Garner et al,, 1975]. The large bulk isotopic enrichments for

K (and S) may reflect cycling of sputtered surface material into the bulk of
the soil as a result of impact melting (e.g., by agglutinate formation), but
we have not yet attempted to evaluate this process quantitatively.

Equation (14) is also valid for the case of an element such as C, which
can be considered to be absent in lunar rocks except for solar wind implantn~
tion. In this case n, in Eq. (14), refers to solar wind, not bulk, abundance.

For our standard assumptions (U = 1 eV) we would predict e(lSC) to be only

about 10 o/oo. This is reasonably close to a bulk soil value, but surface

carbon isotopic enrichments appear much larger (2 50 °/oo) [Epstein and Taylor,

1975]. This may indicate that (a) our adopted sputtering energy spectrum is
incorrect, (b) diffusion loss and reimplantation accompanied by large mass
fractionation is the dcminant effect controlling the surface C isotopic com-
position,.or (c) the solar wind 5(130) is about 40 o/oo. The data of Epstein
and Taylor [1975] indicate that the surface and volume (bulk) correlated C

in lunar soil represent different sources and that the bulk C isotopic compo-
sition is irrelevant for our purposes. The bulk C is probably meteoritic or
lurar in origin. Significant lunar C inputs into the regolith are required
if suggestions are correct that CO in lunar rocks has produced metallic iron

[Sato et al., 1973, 1976] or vesiculation [Goldberg et al., 1976].

14



Large 8(15N) values (up to 100 °/oo0) for lunar soils [Kerridge et al., 1975]

do not appear to be surface correlated [Becker and Clayton, 1975] and thus

cannot be explained by sputtering. Furthermore, it should be noted that to
the extent that the form of our sputtering energy spectrum is correct
(regardless of the value of U adopted) the S(ISN) produced by sputtering
should not exceed 70 o/oo.
; 4y 40 C e .
For U = 1 eV, we also expect Ca/ Ca variations corresponding to about

S(MACa) ~ 20 0/oo. Experiments to date [Russell et al., 1976] suggest that

no variations greater than 2 o/oo are present, This is difficult to undgr-
stand in view of the 0, Si, S, data, regardless of the fractionation mechanism.
In summary, it seems inescapable that sputtering/gravitational mass
fractionation is a major process in determining the chemical and isotopic
composition of lunar surface layers, but this mechanism cannot account for
all isotopic data. We are still far from a comprehensive picture of the
sources and mechanisms for the concentrations and isotopic compositions of

light elements in lunar soils.

6. DISCUSSION

It is worthwhile summarizing the main features of the model present.ad
here, drawing attention to the fundamental assumptions upon which the calcula-
tions depend and noting those aspects which require further experiments in
order to check the validity of this approach.

A. Energy distribution of sputtered particles, In order for an eifect

to occur that is consistent with the experimental observations, the velocity
distribution of the sputtered atoms must extend to sufficiently high veio-
cities that there is significant mass loss from the moon. Although there

appears to be some evidence [Andersen and Bay, 1972] that heavy atoms tend

to be emitted at lower energies than light atoms, as might be expected from

15



arguments on the efficiency of collisional energy transfer, we have adopted the
conservative assumption that the energy spectra are identical for all atomic
species. An energy spectrum weighted more at lower energies for the heavier
particles would, of course, magnify surface d-values still further.

The energy spectrum, (7), was developed primarily to explain sputte:ing

experiments with projectiles both heavier and more energetic than solar wind

particles. Still it is a useful parametrization in cur case, since by simply
adjusting U one can con"rol the position of the peak of the energy distribu-
tion. It is interesting to investigate the dependence of the results on

the value of U. Figure 3 illustrates the variation in € as a function of

U for the three systems‘of interest. Decreasing the binding energy tend:

to increase all g-values and thereby to improve slightly the match to
experiment. Thus if U = 0.25 eV, we find e(§i/0) = 595 °/oo, e(°"si) = 18 %/oo
and 6(180) = 67 °/oo. Mass fractionation by the mechanism proposed here
will, of course, apply to all elements across the periodic table., Figura L
demonstrates how isotopic enrichments will vary as a function of mass nuwmber
for isotopes differing in mass by two units.

An interesting feature of the form of the energy spectrum adopted here
is the asymptotic behavior of ¢ when U ~ O. 1In this case, it is easy tc show
that e(i/j) = Ai/Aj-l where Ai,j are the mass numbers of the elements uader
consideration, Therefore if the energy spectrum of :jputtered particles is
peaked at very low energies, as might happen if the :puttered material which
returns and adheres to the grain surfaces is only ve.y weakly bound, thea

rather large heavy atom enrichments might result.

Such a discussion is largely speculative until experimental measurements
are carried out of the energy distribution of each species of sputtered atoms

under ~ 1 keV/amu hydrcgen and helium bombardment of targets whose compcsi-

16



tion, surface structure and irradiation history resembles that of the lunar
surface. The absence of data in this area attests to the difficulty of such
measurements.

B. Rate of Erosion by Sputtering. The surface equilibrium mass abund-

ances are, of course, independent of the sputtering rate itself. However,

values for the sputtering rate have ranged from 0.05 to 0.5 Ao/year implying
e-folding times between 2400 and 240 years. These wide variations in S need
not necessarily be discrepant as the rate of erosion is a sensitive function

of the surface history of the samples [Andersen and Bay, 1972]. Furthermore,

there exist examples of minerals such as ilmenite which are especially radia-

tion damage resistant — implying very low sputtering yields [Maurette and

Price, 1975]. 1In the context of lunar surface fractionation, once the time
to approach mass fractionation equilibrium becomes comparable to, or shorter
than, the integrated time that grains spend exposed to the sular wind, the
enrichment factors will be correspondingly less pronounced. Consequently,
systematic measurements of total erosion rates under simulated solar wind
conditions are required. Once a complete set of sputtering rates is compiled
it may become possible to infer surface residence times from isotopic efiects.
On the other hand, the detailed nature of the model presented here might be
probed by measuring, for example, O-isotope enhancements in ilmenite grains
which have not reached equilibrium.

The topic of mass dependence in the sputtering process itself

is receiving increasing theoretical [Andersen and Sigmund, 1974] and

experimental attention [Shimizu et al., 1973; Poate et al., 1975]. While

simple considerations of mass conservation require that after prolonged

sputtering the composition of the ejected material reflect the composition

of the target, there may be important dynamic effects occurring during the
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irradiation which might disturb the balance. Then the sputtering rates of
different atomic or isotopic species may differ from one another. In such
a case, temperature sensitive diffusion processes may, for example, maintain
a surface which is fractionated from the bulk even neglecting return of
sputtered material. The thermal cycling of the outer few centimeters of the
moon might provide the necessary stimulus for such a process.

Within certain approximations [Haff and Switkowski, to be published],

the partial sputtering rate of species i is predicted to be N;S, where 8
is the total rate. We have made this assumption above. In principle, how-
ever, it is possible for each species to be characterized by its own sputtering

factor, so that S, # Sju In this case Eq. (17) may be generalized to

S. (1- fj)

5(i/3) =§'J.—*(—1‘:?_—)‘- 1 . (18)

Contemporary theories of sputtering of complex targets [Andersen and Sigmund,

1974 ] suggest that the additional ratio Sj/si might introduce a factor

significantly less than the mass ratio of species i and j and would be

important only when the mass difference of the elements is very large. FLow-
ever, until more experimental and theoretical work has been done on the
sputtering rates and energy spectra associated with complex targets, we

feel it is premature and perhaps misleading to go beyond the simplest

possible sputtering model.

C. Tonized components., In the treatment presented herein, we have
neglected processes which may affect the one-hop ballistic trajectories of
ejected atoms which we have assumed to occur. Thus, if a significant por-
tion of the Sputtéred material consists of ions rather than neutral atoms,

electric and magnetic fields present near the moon could strongly affect

CFy
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the ultimate fate of the sputtered particles and thereby our conclusions.
Laboratory evidence indicates that there is a significant ionic component

only in the case of alkali metals [Krohn, 1962] and alkali halides [Richards
and Kelly, 1973]. 1In most other cases reported so far, the overwhelming

number of sputtered particles is neutral. Still, ions may be produced by
subsequent interaction of the sputtered atoms with soiar photons. The
probability of this occurring is certai;ly negligible for those atoms whose
velocity exceeds the lunar escape velocity,  since photoionization lifetimes
near the moon tend to be ~ 105-107 sec. It is also reasonable to expect

that returning Si and O will become bonded to the grain surfaces after, at

most, a few hops, and thereby trapped on the moon much more quickly than the
unreactive noble gases. Atoms of these gases are provably released at thermal
energies by diffusion aud therefore enter the atmosphere many more times, build-
ing up a measurable quantity until ionization processes begin to limit the atmo-~

spheric concentrations [Heymann and Yaniv, 1970; Manka and Michel, 1971]. 1In

the unlikely event that sputtered Si and O similarly 1iffuse, then the frac-
tionations produced by this mechanism would enhance those produced by sputter-

ing.

7. CONCLUSIONS

It seems that sputtering of the lunar surface by the solar wind will
give rise to significant surface heavy atom enrichments., With the use of
plausible parameters within the model, calculated §-values are seen to
approach those measured for Si and 0. A more detailed evaluation must await
further experimental study of the fundamental sputtering processes involved.
Nevertheless, it is very likely that this mechanism will account for at

least some of the observed enrichments. Predictions are included for heavy

19



isotope enrichments for elements extending beyond Si in the periodic table.
Important tests of the model lie in the observation of enrichments in otler
elements, e.g., S. K and Ca. Data for more than two isotopes are especislly
valuable for comparison with the calculations. Enrichments are also pre.
dicted for any pair of elements and experimental measurements of cases where
complicating effects due to chemical fractionation, etc., may be explicitly

accounted for would be interesting.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. b4,

FIGURE CAPTIONS

Schematic diagram of processes initiated at the lunar surface by
solar wind irradiation. Material sputtered by the solar wind
largely escapes beyond lunar gravity. The small (in the case of
lighter elements) returning component is enriched in heavier
isotopes which are incorporated into a surface layer, 4x deep, by
radiation-induced mixing. As the lunar surface is eroded, the
active layer persists, Note that in practics sputtered atoms
returning_on an area element of the lunar surface did not origin-
ate there. Therefore grain surfaces shoulé reflect a homogenized

sampling of a wide area of the moon.

Semi-logarithmic plot of the energy distribution of sputtered
particles. o(Z)dE ~ [dE/E2(14-U/E)3] for U = 1 eV. The lunar

escape energies for atoms of mass 16 and 28 are indicated.

Semi-logarithmic plot of calculated values «f ¢ vs U. Curves ave
shown for 180-160, %051-28s1 and si-0 (dashed curve). The scale
for ¢(Si-0) is noted to the right of the fijure. As U > 0,

€(180) + 125 °/oo0, e(soSi) + 71 /oo, and €{Si/0) + 750 °/oo.

Calculated mass enrichments in o/oo as a function of mass number
for a range of values of U. ¢ is plotted for isotopes whose

masses differ by 2 a.m.u.
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