13,888 research outputs found
First measurement of gravitational lensing by cosmic voids in SDSS
We report the first measurement of the diminutive lensing signal arising from
matter underdensities associated with cosmic voids. While undetectable
individually, by stacking the weak gravitational shear estimates around 901
voids detected in SDSS DR7 by Sutter et al. (2012a), we find substantial
evidence for a depression of the lensing signal compared to the cosmic mean.
This depression is most pronounced at the void radius, in agreement with
analytical models of void matter profiles. Even with the largest void sample
and imaging survey available today, we cannot put useful constraints on the
radial dark-matter void profile. We invite independent investigations of our
findings by releasing data and analysis code to the public at
https://github.com/pmelchior/void-lensingComment: 6 pages, 5 figures, as accepted by MNRA
Mentoring to reduce antisocial behaviour in childhood
The effects of social interventions need to be examined in real life situations as well as studie
What's the evidence that NICE guidance has been implemented? Results from a national evaluation using time series analysis, audit of patients' notes, and interviews
OBJECTIVES: To assess the extent and pattern of implementation of guidance issued by the National Institute for Clinical Excellence (NICE). DESIGN: Interrupted time series analysis, review of case notes, survey, and interviews. SETTING: Acute and primary care trusts in England and Wales. PARTICIPANTS: All primary care prescribing, hospital pharmacies; a random sample of 20 acute trusts, 17 mental health trusts, and 21 primary care trusts; and senior clinicians and managers from five acute trusts. MAIN OUTCOME MEASURES: Rates of prescribing and use of procedures and medical devices relative to evidence based guidance. RESULTS: 6308 usable patient audit forms were returned. Implementation of NICE guidance varied by trust and by topic. Prescribing of some taxanes for cancer (P <0.002) and orlistat for obesity (P <0.001) significantly increased in line with guidance. Prescribing of drugs for Alzheimer’s disease and prophylactic extraction of wisdom teeth showed trends consistent with, but not obviously a consequence of, the guidance. Prescribing practice often did not accord with the details of the guidance. No change was apparent in the use of hearing aids, hip prostheses, implantable cardioverter defibrillators, laparoscopic hernia repair, and laparoscopic colorectal cancer surgery after NICE guidance had been issued. CONCLUSIONS: Implementation of NICE guidance has been variable. Guidance seems more likely to be adopted when there is strong professional support, a stable and convincing evidence base, and no increased or unfunded costs, in organisations that have established good systems for tracking guidance implementation and where the professionals involved are not isolated. Guidance needs to be clear and reflect the clinical context
Towards an understanding of third-order galaxy-galaxy lensing
Third-order galaxy-galaxy lensing (G3L) is a next generation galaxy-galaxy
lensing technique that either measures the excess shear about lens pairs or the
excess shear-shear correlations about lenses. It is clear that these statistics
assess the three-point correlations between galaxy positions and projected
matter density. For future applications of these novel statistics, we aim at a
more intuitive understanding of G3L to isolate the main features that possibly
can be measured. We construct a toy model ("isolated lens model"; ILM) for the
distribution of galaxies and associated matter to determine the measured
quantities of the two G3L correlation functions and traditional galaxy-galaxy
lensing (GGL) in a simplified context. The ILM presumes single lens galaxies to
be embedded inside arbitrary matter haloes that, however, are statistically
independent ("isolated") from any other halo or lens position. In the ILM, the
average mass-to-galaxy number ratio of clusters of any size cannot change. GGL
and galaxy clustering alone cannot distinguish an ILM from any more complex
scenario. The lens-lens-shear correlator in combination with second-order
statistics enables us to detect deviations from a ILM, though. This can be
quantified by a difference signal defined in the paper. We demonstrate with the
ILM that this correlator picks up the excess matter distribution about galaxy
pairs inside clusters. The lens-shear-shear correlator is sensitive to
variations among matter haloes. In principle, it could be devised to constrain
the ellipticities of haloes, without the need for luminous tracers, or maybe
even random halo substructure. [Abridged]Comment: 14 pages, 3 figures, 1 table, accepted by A&A; some
"lens-shear-shear" were falsely "lens-lens-shear
The L_X--M relation of Clusters of Galaxies
We present a new measurement of the scaling relation between X-ray luminosity
and total mass for 17,000 galaxy clusters in the maxBCG cluster sample.
Stacking sub-samples within fixed ranges of optical richness, N_200, we measure
the mean 0.1-2.4 keV X-ray luminosity, , from the ROSAT All-Sky Survey.
The mean mass, , is measured from weak gravitational lensing of SDSS
background galaxies (Johnston et al. 2007). For 9 <= N_200 < 200, the data are
well fit by a power-law, /10^42 h^-2 erg/s = (12.6+1.4-1.3 (stat) +/- 1.6
(sys)) (/10^14 h^-1 M_sun)^1.65+/-0.13. The slope agrees to within 10%
with previous estimates based on X-ray selected catalogs, implying that the
covariance in L_X and N_200 at fixed halo mass is not large. The luminosity
intercent is 30%, or 2\sigma, lower than determined from the X-ray flux-limited
sample of Reiprich & Bohringer (2002), assuming hydrostatic equilibrium. This
difference could arise from a combination of Malmquist bias and/or systematic
error in hydrostatic mass estimates, both of which are expected. The intercept
agrees with that derived by Stanek et al. (2006) using a model for the
statistical correspondence between clusters and halos in a WMAP3 cosmology with
power spectrum normalization sigma_8 = 0.85. Similar exercises applied to
future data sets will allow constraints on the covariance among optical and hot
gas properties of clusters at fixed mass.Comment: 5 pages, 1 figure, MNRAS accepte
Hidden spin-current conservation in 2d Fermi liquids
We report the existence of regimes of the two dimensional Fermi liquid that
show unusual conservation of the spin current and may be tuned by varying some
parameter like the density of fermions. We show that for reasonable models of
the effective interaction the spin current may be conserved in general in 2d,
not only for a particular regime. Low temperature spin waves propagate
distinctively in these regimes and entirely new ``spin-acoustic'' modes are
predicted for scattering-dominated temperature ranges. These new
high-temperature propagating spin waves provide a clear signature for the
experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR
Halo mass - concentration relation from weak lensing
We perform a statistical weak lensing analysis of dark matter profiles around
tracers of halo mass from galactic- to cluster-size halos. In this analysis we
use 170,640 isolated ~L* galaxies split into ellipticals and spirals, 38,236
groups traced by isolated spectroscopic Luminous Red Galaxies (LRGs) and 13,823
MaxBCG clusters from the Sloan Digital Sky Survey (SDSS) covering a wide range
of richness. Together these three samples allow a determination of the density
profiles of dark matter halos over three orders of magnitude in mass, from
10^{12} M_{sun} to 10^{15} M_{sun}. The resulting lensing signal is consistent
with an NFW or Einasto profile on scales outside the central region. We find
that the NFW concentration parameter c_{200b} decreases with halo mass, from
around 10 for galactic halos to 4 for cluster halos. Assuming its dependence on
halo mass in the form of c_{200b} = c_0 [M/(10^{14}M_{sun}/h)]^{\beta}, we find
c_0=4.6 +/- 0.7 (at z=0.22) and \beta=0.13 +/- 0.07, with very similar results
for the Einasto profile. The slope (\beta) is in agreement with theoretical
predictions, while the amplitude is about two standard deviations below the
predictions for this mass and redshift, but we note that the published values
in the literature differ at a level of 10-20% and that for a proper comparison
our analysis should be repeated in simulations. We discuss the implications of
our results for the baryonic effects on the shear power spectrum: since these
are expected to increase the halo concentration, the fact that we see no
evidence of high concentrations on scales above 20% of the virial radius
suggests that baryonic effects are limited to small scales, and are not a
significant source of uncertainty for the current weak lensing measurements of
the dark matter power spectrum. [ABRIDGED]Comment: 17 pages, 5 figures, accepted to JCAP pending minor revisions that
are included in v2 here on arXi
Discontinuous Molecular Dynamics for Semi-Flexible and Rigid Bodies
A general framework for performing event-driven simulations of systems with
semi-flexible or rigid bodies interacting under impulsive torques and forces is
outlined. Two different approaches are presented. In the first, the dynamics
and interaction rules are derived from Lagrangian mechanics in the presence of
constraints. This approach is most suitable when the body is composed of
relatively few point masses or is semi-flexible. In the second method, the
equations of rigid bodies are used to derive explicit analytical expressions
for the free evolution of arbitrary rigid molecules and to construct a simple
scheme for computing interaction rules. Efficient algorithms for the search for
the times of interaction events are designed in this context, and the handling
of missed interaction events is discussed.Comment: 16 pages, double column revte
- …
