112 research outputs found

    neXtProt: a knowledge platform for human proteins

    Get PDF
    neXtProt (http://www.nextprot.org/) is a new human protein-centric knowledge platform. Developed at the Swiss Institute of Bioinformatics (SIB), it aims to help researchers answer questions relevant to human proteins. To achieve this goal, neXtProt is built on a corpus containing both curated knowledge originating from the UniProtKB/Swiss-Prot knowledgebase and carefully selected and filtered high-throughput data pertinent to human proteins. This article presents an overview of the database and the data integration process. We also lay out the key future directions of neXtProt that we consider the necessary steps to make neXtProt the one-stop-shop for all research projects focusing on human proteins

    Measurement of the Electric Form Factor of the Neutron at Q^2=0.5 and 1.0 (GeV/c)^2

    Full text link
    The electric form factor of the neutron was determined from measurements of the \vec{d}(\vec{e},e' n)p reaction for quasielastic kinematics. Polarized electrons were scattered off a polarized deuterated ammonia target in which the deuteron polarization was perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle detector. We find G_E^n = 0.0526 +/- 0.0033 (stat) +/- 0.0026 (sys) and 0.0454 +/- 0.0054 +/- 0.0037 at Q^2 = 0.5 and 1.0 (GeV/c)^2, respectively.Comment: 5 pages, 2 figures, as publishe

    HFR1 Is Crucial for Transcriptome Regulation in the Cryptochrome 1-Mediated Early Response to Blue Light in Arabidopsis thaliana

    Get PDF
    Cryptochromes are blue light photoreceptors involved in development and circadian clock regulation. They are found in both eukaryotes and prokaryotes as light sensors. Long Hypocotyl in Far-Red 1 (HFR1) has been identified as a positive regulator and a possible transcription factor in both blue and far-red light signaling in plants. However, the gene targets that are regulated by HFR1 in cryptochrome 1 (cry1)-mediated blue light signaling have not been globally addressed. We examined the transcriptome profiles in a cry1- and HFR1-dependent manner in response to 1 hour of blue light. Strikingly, more than 70% of the genes induced by blue light in an HFR1-dependent manner were dependent on cry1, and vice versa. High overrepresentation of W-boxes and OCS elements were found in these genes, indicating that this strong cry1 and HFR1 co-regulation on gene expression is possibly through these two cis-elements. We also found that cry1 was required for maintaining the HFR1 protein level in blue light, and that the HFR1 protein level is strongly correlated with the global gene expression pattern. In summary, HFR1, which is fine-tuned by cry1, is crucial for regulating global gene expression in cry1-mediated early blue light signaling, especially for the function of genes containing W-boxes and OCS elements

    The UniProt-GO Annotation database in 2011

    Get PDF
    The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set

    Residues Clustered in the Light-Sensing Knot of Phytochrome B are Necessary for Conformer-Specific Binding to Signaling Partner PIF3

    Get PDF
    The bHLH transcription factor, PHYTOCHROME INTERACTING FACTOR 3 (PIF3), interacts specifically with the photoactivated, Pfr, form of Arabidopsis phytochrome B (phyB). This interaction induces PIF3 phosphorylation and degradation in vivo and modulates phyB-mediated seedling deetiolation in response to red light. To identify missense mutations in the phyB N-terminal domain that disrupt this interaction, we developed a yeast reverse-hybrid screen. Fifteen individual mutations identified in this screen, or in previous genetic screens for Arabidopsis mutants showing reduced sensitivity to red light, were shown to also disrupt light-induced binding of phyB to PIF3 in in vitro co-immunoprecipitation assays. These phyB missense mutants fall into two general classes: Class I (eleven mutants) containing those defective in light signal perception, due to aberrant chromophore attachment or photoconversion, and Class II (four mutants) containing those normal in signal perception, but defective in the capacity to transduce this signal to PIF3. By generating a homology model for the three-dimensional structure of the Arabidopsis phyB chromophore-binding region, based on the crystal structure of Deinococcus radiodurans phytochrome, we predict that three of the four Class II mutated phyB residues are solvent exposed in a cleft between the presumptive PAS and GAF domains. This deduction suggests that these residues could be directly required for the physical interaction of phyB with PIF3. Because these three residues are also necessary for phyB-imposed inhibition of hypocotyl elongation in response to red light, they are functionally necessary for signal transfer from photoactivated phyB, not only to PIF3 and other related bHLH transcription factors tested here, but also to other downstream signaling components involved in regulating seedling deetiolation

    PIF Genes Mediate the Effect of Sucrose on Seedling Growth Dynamics

    Get PDF
    As photoautotrophs, plants can use both the form and amount of fixed carbon as a measure of the light environment. In this study, we used a variety of approaches to elucidate the role of exogenous sucrose in modifying seedling growth dynamics. In addition to its known effects on germination, high-resolution temporal analysis revealed that sucrose could extend the number of days plants exhibited rapid hypocotyl elongation, leading to dramatic increases in ultimate seedling height. In addition, sucrose changed the timing of daily growth maxima, demonstrating that diel growth dynamics are more plastic than previously suspected. Sucrose-dependent growth promotion required function of multiple phytochrome-interacting factors (PIFs), and overexpression of PIF5 led to growth dynamics similar to plants exposed to sucrose. Consistent with this result, sucrose was found to increase levels of PIF5 protein. PIFs have well-established roles as integrators of response to light levels, time of day and phytohormone signaling. Our findings strongly suggest that carbon availability can modify the known photomorphogenetic signaling network

    FHY1 Mediates Nuclear Import of the Light-Activated Phytochrome A Photoreceptor

    Get PDF
    The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway

    Contemporary management of primary parapharyngeal space tumors

    Get PDF
    The parapharyngeal space is a complex anatomical area. Primary parapharyngeal tumors are rare tumors and 80% of them are benign. A variety of tumor types can develop in this location; most common are salivary gland neoplasm and neurogenic tumors. The management of these tumors has improved greatly owing to the developments in imaging techniques, surgery, and radiotherapy. Most tumors can be removed with a low rate of complications and recurrence. The transcervical approach is the most frequently used. In some cases, minimally invasive approaches may be used alone or in combination with a limited transcervical route, allowing large tumors to be removed by reducing morbidity of expanded approaches. An adequate knowledge of the anatomy and a careful surgical plan is essential to tailor management according to the patient and the tumor. The purpose of the present review was to update current aspects of knowledge related to this more challenging area of tumor occurrence.Peer reviewe
    corecore