230 research outputs found

    Human APOBEC3 proteins can inhibit xenotropic murine leukemia virus-related virus infectivity

    Get PDF
    AbstractXenotropic murine leukemia virus-related virus (XMRV) is a novel retrovirus, related to murine leukemia virus (MLV), that has been implicated in human disease. If XMRV is indeed able to replicate in humans, then one might predict that XMRV would have developed resistance to human innate antiviral resistance factors such as APOBEC3G (hA3G). In fact, we observed that XMRV and MLV are both highly sensitive to inhibition by hA3G and equally resistant to inhibition by murine APOBEC3. While several human prostate cancer cell lines were found to lack hA3G, stable expression of physiological levels of hA3G rendered these cells refractory to XMRV replication. Few human tissues fail to express hA3G, and we therefore hypothesize that XMRV replicates in one or more hA3G-negative reservoir tissues and/or that human XMRV infections are likely to be rare and potentially of zoonotic origin

    Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies

    Get PDF
    Many anti-SARS-CoV-2 neutralizing antibodies target the ACE2-binding site on viral spike receptor-binding domains (RBDs). The most potent antibodies recognize exposed variable epitopes, often rendering them ineffective against other sarbecoviruses and SARS-CoV-2 variants. Class 4 anti-RBD antibodies against a less-exposed, but more-conserved, cryptic epitope could recognize newly-emergent zoonotic sarbecoviruses and variants, but usually show only weak neutralization potencies. We characterized two class 4 anti-RBD antibodies derived from COVID-19 donors that exhibited broad recognition and potent neutralization of zoonotic coronavirus and SARS-CoV-2 variants. C118-RBD and C022-RBD structures revealed CDRH3 mainchain H-bond interactions that extended an RBD β-sheet, thus reducing sensitivity to RBD sidechain changes, and epitopes that extended from the cryptic epitope to occlude ACE2 binding. A C118-spike trimer structure revealed rotated RBDs to allow cryptic epitope access and the potential for intra-spike crosslinking to increase avidity. These studies facilitate vaccine design and illustrate potential advantages of class 4 RBD-binding antibody therapeutics

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies

    Get PDF
    Neutralizing antibody responses to coronaviruses mainly target the receptor-binding domain (RBD) of the trimeric spike. Here, we characterized polyclonal IgGs and Fabs from COVID-19 convalescent individuals for recognition of coronavirus spikes. Plasma IgGs differed in their focus on RBD epitopes, recognition of alpha- and beta-coronaviruses, and contributions of avidity to increased binding/neutralization of IgGs over Fabs. Using electron microscopy, we examined specificities of polyclonal plasma Fabs, revealing recognition of both S1^A and RBD epitopes on SARS-CoV-2 spike. Moreover, a 3.4Ã… cryo-EM structure of a neutralizing monoclonal Fab-spike complex revealed an epitope that blocks ACE2 receptor binding. Modeling based on these structures suggested different potentials for inter-spike crosslinking by IgGs on viruses and that characterized IgGs would not be affected by identified SARS-CoV-2 spike mutations. Overall, our studies structurally define a recurrent anti-SARS-CoV-2 antibody class derived from VH3-53/VH3-66 and similarity to a SARS-CoV VH3-30 antibody, providing criteria for evaluating vaccine-elicited antibodies

    Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants

    Get PDF
    Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins

    Renal HIV Expression Is Unaffected by Serum LPS Levels in an HIV Transgenic Mouse Model of LPS Induced Kidney Injury

    Get PDF
    Acute kidney injury (AKI) is associated with increased rates of mortality. For unknown reasons, HIV infected individuals have a higher risk of AKI than uninfected persons. We tested our hypothesis that increased circulating LPS increases renal expression of HIV and that HIV transgenic (Tg26) mice have increased susceptibility to AKI. Tg26 mice harbor an HIV transgene encoding all HIV genes except gag and pol, and develop a phenotype analogous to HIVAN. Mice were used at 4–6 weeks of age before the onset of gross renal disease. Mice were injected i.p. with LPS or sterile saline. Renal function, tubular injury, cytokine expression, and HIV transcription were evaluated in Tg26 and wild type (WT) mice. LPS injection induced a median 60.1-fold increase in HIV expression in spleen but no change in kidney. There was no significant difference in renal function, cytokine expression, or tubular injury scores at baseline or 24 hours after LPS injection. HIV transcription was also analyzed in vitro using a human renal tubular epithelial cell (RTEC) line. HIV transcription increased minimally in human RTEC, by 1.47 fold, 48 hours after LPS exposure. We conclude that Tg26 mice do not increase HIV expression or have increased susceptibility to LPS induced AKI. The increased risk of AKI in HIV infected patients is not mediated via increased renal expression of HIV in the setting of sepsis. Moreover, renal regulation of HIV transcription is different to that in the spleen

    Analysis of the Initiating Events in HIV-1 Particle Assembly and Genome Packaging

    Get PDF
    HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells

    Production of HIV Particles Is Regulated by Altering Sub-Cellular Localization and Dynamics of Rev Induced by Double-Strand RNA Binding Protein

    Get PDF
    Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication
    • …
    corecore