232 research outputs found

    Status of the LHCb magnet system

    Get PDF
    The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2×10322\times 10^{32}~cm−2^{-2}s −1~^{-1}, which should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single-arm spectrometer for the separation and momentum measurement of the charged particles with a large dipole magnet of a free aperture of ±300\pm 300~mrad horizontally and ±250\pm 250~mrad vertically. The magnet is designed for a total integrated field of 4~Tm. The pole gap is 2.2 to 3.5~m vertically (the direction of the field) and 2.6 to 4.2~m horizontally. The overall length of the magnet (in beam direction) is 5~m and its total weight about 1500~t. The power dissipation in the aluminium coils will be 4.2~MW. The magnet yoke is constructed from low carbon steel plates of 100~mm thickness. The maximum weight of one plate does not exceed 25~t. The coils are wound from large hollow aluminium conductor of 50 mm×50 mm50~{\rm mm}\times 50~{\rm mm} cross-section with a central cooling channel of 25~mm diameter for the pressurized demineralized water. Each of the two coils is composed of 15~monolayer pancakes of 15~turns per pancake. To reach good field quality the coils are bent by 45∘^\circ towards the gap along the horizontal aperture of ±300\pm 300~mrad and the pole pieces have large shims. The underlying magnet design, its present status and milestones will be reviewed

    PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    Full text link
    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project which will aim at characterizing one of these foreground sources, the polarization of the dust continuum emission in the diffuse interstellar medium. The PILOT experiment will also constitute a test-bed for using multiplexed bolometer arrays for polarization measurements. We present the results of ground tests obtained just before the first flight of the instrument.Comment: 17 pages, 13 figures. Presented at SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be published in Proc. SPIE volume 915

    Guided optimization of fluid status in haemodialysis patients

    Get PDF
    Background. Achieving normohydration remains a non-trivial issue in haemodialysis therapy. Guiding the haemodialysis patient on the path between fluid overload and dehydration should be the clinical target, although it can be difficult to achieve this target in practice. Objective and clinically applicable methods for the determination of the normohydration status on an individual basis are needed to help in the identification of an appropriate target weight

    The Planck High Frequency Instrument, a 3rd generation CMB experiment, and a full sky submillimeter survey

    Get PDF
    The High Frequency Instrument (HFI) of Planck is the most sensitive CMB experiment ever planned. Statistical fluctuations (photon noise) of the CMB itself will be the major limitation to the sensitivity of the CMB channels. Higher frequency channels will measure galactic foregrounds. Together with the Low Frequency Instrument, this will make a unique tool to measure the full sky and to separate the various components of its spectrum. Measurement of the polarization of these various components will give a new picture of the CMB. In addition, HFI will provide the scientific community with new full sky maps of intensity and polarization at six frequencies, with unprecedented angular resolution and sensitivity. This paper describes the logics that prevailed to define the HFI and the performances expected from this instrument. It details several features of the HFI design that have not been published up to now.Comment: To be published in the proceedings of the workshop on "The Cosmic Microwave Background and its Polarization", New Astronomy Reviews, (eds., S. Hanany and R.A. Olive

    International practice patterns and factors associated with non-conventional hemodialysis utilization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of our study was to determine characteristics that influence the utilization of non-conventional hemodialysis (NCHD) therapies and its subtypes (nocturnal (NHD), short daily (SDHD), long conventional (LCHD) and conventional hemodialysis (CHD) as well as provider attitudes regarding the evidence for NCHD use.</p> <p>Methods</p> <p>An international cohort of subscribers of a nephrology education website <url>http://www.nephrologynow.com</url> was invited to participate in an online survey. Non-conventional hemodialysis was defined as any forms of hemodialysis delivered > 3 treatments per week and/or > 4 hours per session. NHD and SDHD included both home and in-centre. Respondents were categorized as CHD if their centre only offered conventional thrice weekly hemodialysis. Variables associated with NCHD and its subtypes were determined using multivariate logistic regression analysis. The survey assessed multiple domains regarding NCHD including reasons for initiating and discontinuing, for not offering and attitudes regarding evidence.</p> <p>Results</p> <p>544 surveys were completed leading to a 15.6% response rate. The final cohort was limited to 311 physicians. Dialysis modalities utilized among the respondents were as follows: NCHD194 (62.4%), NHD 83 (26.7%), SDHD 107 (34.4%), LCHD 81 (26%) and CHD 117 (37.6%). The geographic regions of participants were as follows: 11.9% Canada, 26.7% USA, 21.5% Europe, 6.1% Australia/New Zealand, 10% Africa/Middle East, 10.9% Asia and 12.9% South America. Variables associated with NCHD utilization included NCHD training (OR 2.47 CI 1.25-4.16), government physician reimbursement (OR 2.66, CI 1.11-6.40), practicing at an academic centre (OR 2.28 CI 1.25-4.16), higher national health care expenditure and number of ESRD patients per centre. Hemodialysis providers with patients on NCHD were significantly more likely to agree with the statements that NCHD improves quality of life, improves nutritional status, reduces EPO requirements and is cost effective. The most common reasons to initiate NCHD were driven by patient preference and the desire to improve volume control and global health outcomes.</p> <p>Conclusion</p> <p>Physician attitudes toward the evidence for NCHD differ significantly between NCHD providers and conventional HD providers. Interventions and health policy targeting these areas along with increased physician education and training in NCHD modalities may be effective in increasing its utilization.</p
    • 

    corecore