226 research outputs found

    The absoption refrigerator as a thermal transformer

    Full text link
    The absorption refrigerator can be considered a thermal transformer, i.e. a device that is analogous to the electric transformer. The analogy is based on a correspondence between the extensive quantities entropy and electric charge and that of the intensive variables temperature and electric potential

    Thermodynamic Bounds on Efficiency for Systems with Broken Time-reversal Symmetry

    Full text link
    We show that for systems with broken time-reversal symmetry the maximum efficiency and the efficiency at maximum power are both determined by two parameters: a "figure of merit" and an asymmetry parameter. In contrast to the time-symmetric case, the figure of merit is bounded from above; nevertheless the Carnot efficiency can be reached at lower and lower values of the figure of merit and far from the so-called strong coupling condition as the asymmetry parameter increases. Moreover, the Curzon-Ahlborn limit for efficiency at maximum power can be overcome within linear response. Finally, always within linear response, it is allowed to have simultaneously Carnot efficiency and non-zero power.Comment: Final version, 4 pages, 3 figure

    Driven Spin Systems as Quantum Thermodynamic Machines: Fundamental Limits

    Full text link
    We show that coupled two level systems like qubits studied in quantum information can be used as a thermodynamic machine. At least three qubits or spins are necessary and arranged in a chain. The system is interfaced between two split baths and the working spin in the middle is externally driven. The machine performs Carnot-type cycles and is able to work as heat pump or engine depending on the temperature difference of the baths ΔT\Delta T and the energy differences in the spin system ΔE\Delta E. It can be shown that the efficiency is a function of ΔT\Delta T and ΔE\Delta E.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.

    Efficiency of a thermodynamic motor at maximum power

    Full text link
    Several recent theories address the efficiency of a macroscopic thermodynamic motor at maximum power and question the so-called "Curzon-Ahlborn (CA) efficiency." Considering the entropy exchanges and productions in an n-sources motor, we study the maximization of its power and show that the controversies are partly due to some imprecision in the maximization variables. When power is maximized with respect to the system temperatures, these temperatures are proportional to the square root of the corresponding source temperatures, which leads to the CA formula for a bi-thermal motor. On the other hand, when power is maximized with respect to the transitions durations, the Carnot efficiency of a bi-thermal motor admits the CA efficiency as a lower bound, which is attained if the duration of the adiabatic transitions can be neglected. Additionally, we compute the energetic efficiency, or "sustainable efficiency," which can be defined for n sources, and we show that it has no other universal upper bound than 1, but that in certain situations, favorable for power production, it does not exceed 1/2

    Efficiency at maximum power of thermally coupled heat engines

    Full text link
    We study the efficiency at maximum power of two coupled heat engines, using thermoelectric generators (TEGs) as engines. Assuming that the heat and electric charge fluxes in the TEGs are strongly coupled, we simulate numerically the dependence of the behavior of the global system on the electrical load resistance of each generator in order to obtain the working condition that permits maximization of the output power. It turns out that this condition is not unique. We derive a simple analytic expression giving the relation between the electrical load resistance of each generator permitting output power maximization. We then focuse on the efficiency at maximum power (EMP) of the whole system to demonstrate that the Curzon-Ahlborn efficiency may not always be recovered: the EMP varies with the specific working conditions of each generator but remains in the range predicted by irreversible thermodynamics theory. We finally discuss our results in light of non-ideal Carnot engine behavior.Comment: 11 pages, 7 figure

    Irreversible Performance of a Quantum Harmonic Heat Engine

    Full text link
    The unavoidable irreversible losses of power in a heat engine are found to be of quantum origin. Following thermodynamic tradition a model quantum heat engine operating by the Otto cycle is analyzed. The working medium of the model is composed of an ensemble of harmonic oscillators. A link is established between the quantum observables and thermodynamical variables based on the concept of canonical invariance. These quantum variables are sufficient to determine the state of the system and with it all thermodynamical variables. Conditions for optimal work, power and entropy production show that maximum power is a compromise between the quasistatic limit of adiabatic following on the compression and expansion branches and a sudden limit of very short time allocation to these branches. At high temperatures and quasistatic operating conditions the efficiency at maximum power coincides with the endoreversible result. The optimal compression ratio varies from the square root of the temperature ratio in the quasistatic limit where their reversibility is dominated by heat conductance to the temperature ratio to the power of 1/4 in the sudden limit when the irreversibility is dominated by friction. When the engine deviates from adiabatic conditions the performance is subject to friction. The origin of this friction can be traced to the noncommutability of the kinetic and potential energy of the working medium.Comment: 25 pages, 7 figures. Revision added explicit heat-transfer expression and extended the discussion on the quantum origin of frictio

    Carnot cycle for an oscillator

    Get PDF
    Carnot established in 1824 that the efficiency of cyclic engines operating between a hot bath at absolute temperature ThotT_{hot} and a bath at a lower temperature TcoldT_{cold} cannot exceed 1Tcold/Thot1-T_{cold}/T_{hot}. We show that linear oscillators alternately in contact with hot and cold baths obey this principle in the quantum as well as in the classical regime. The expression of the work performed is derived from a simple prescription. Reversible and non-reversible cycles are illustrated. The paper begins with historical considerations and is essentially self-contained.Comment: 19 pages, 3 figures, sumitted to European Journal of Physics Changed content: Fluctuations are considere

    Optimal performance of endoreversible quantum refrigerators

    Get PDF
    The derivation of general performance benchmarks is important in the design of highly optimized heat engines and refrigerators. To obtain them, one may model phenomenologically the leading sources of irreversibility ending up with results that are model independent, but limited in scope. Alternatively, one can take a simple physical system realizing a thermodynamic cycle and assess its optimal operation from a complete microscopic description. We follow this approach in order to derive the coefficient of performance at maximum cooling rate for any endoreversible quantum refrigerator. At striking variance with the universality of the optimal efficiency of heat engines, we find that the cooling performance at maximum power is crucially determined by the details of the specific system-bath interaction mechanism. A closed analytical benchmark is found for endoreversible refrigerators weakly coupled to unstructured bosonic heat baths: an ubiquitous case study in quantum thermodynamics

    The falling chain of Hopkins, Tait, Steele and Cayley

    Get PDF
    A uniform, flexible and frictionless chain falling link by link from a heap by the edge of a table falls with an acceleration g/3g/3 if the motion is nonconservative, but g/2g/2 if the motion is conservative, gg being the acceleration due to gravity. Unable to construct such a falling chain, we use instead higher-dimensional versions of it. A home camcorder is used to measure the fall of a three-dimensional version called an xyzxyz-slider. After frictional effects are corrected for, its vertical falling acceleration is found to be ax/g=0.328±0.004a_x/g = 0.328 \pm 0.004. This result agrees with the theoretical value of ax/g=1/3a_x/g = 1/3 for an ideal energy-conserving xyzxyz-slider.Comment: 17 pages, 5 figure

    Brownian Carnot engine

    Get PDF
    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro-engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Despite its potential relevance for the development of a thermodynamics of small systems, an experimental study of microscopic Carnot engines is still lacking. Here we report on an experimental realization of a Carnot engine with a single optically trapped Brownian particle as working substance. We present an exhaustive study of the energetics of the engine and analyze the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency -an insight that could inspire novel strategies in the design of efficient nano-motors.Comment: 7 pages, 7 figure
    corecore