Several recent theories address the efficiency of a macroscopic thermodynamic
motor at maximum power and question the so-called "Curzon-Ahlborn (CA)
efficiency." Considering the entropy exchanges and productions in an n-sources
motor, we study the maximization of its power and show that the controversies
are partly due to some imprecision in the maximization variables. When power is
maximized with respect to the system temperatures, these temperatures are
proportional to the square root of the corresponding source temperatures, which
leads to the CA formula for a bi-thermal motor. On the other hand, when power
is maximized with respect to the transitions durations, the Carnot efficiency
of a bi-thermal motor admits the CA efficiency as a lower bound, which is
attained if the duration of the adiabatic transitions can be neglected.
Additionally, we compute the energetic efficiency, or "sustainable efficiency,"
which can be defined for n sources, and we show that it has no other universal
upper bound than 1, but that in certain situations, favorable for power
production, it does not exceed 1/2