We show that for systems with broken time-reversal symmetry the maximum
efficiency and the efficiency at maximum power are both determined by two
parameters: a "figure of merit" and an asymmetry parameter. In contrast to the
time-symmetric case, the figure of merit is bounded from above; nevertheless
the Carnot efficiency can be reached at lower and lower values of the figure of
merit and far from the so-called strong coupling condition as the asymmetry
parameter increases. Moreover, the Curzon-Ahlborn limit for efficiency at
maximum power can be overcome within linear response. Finally, always within
linear response, it is allowed to have simultaneously Carnot efficiency and
non-zero power.Comment: Final version, 4 pages, 3 figure