222 research outputs found

    Improving the Quality of EEG Data in Patients With Alzheimers Disease Using ICA

    Get PDF
    Does Independent Component Analysis (ICA) denature EEG signals? We applied ICA to two groups of subjects (mild Alzheimer patients and control subjects). The aim of this study was to examine whether or not the ICA method can reduce both group di®erences and within-subject variability. We found that ICA diminished Leave-One- Out root mean square error (RMSE) of validation (from 0.32 to 0.28), indicative of the reduction of group di®erence. More interestingly, ICA reduced the inter-subject variability within each group (¾ = 2:54 in the ± range before ICA, ¾ = 1:56 after, Bartlett p = 0.046 after Bonfer- roni correction). Additionally, we present a method to limit the impact of human error (' 13:8%, with 75.6% inter-cleaner agreement) during ICA cleaning, and reduce human bias. These ¯ndings suggests the novel usefulness of ICA in clinical EEG in Alzheimer's disease for reduction of subject variability

    Causal hierarchy within the thalamo-cortical network in spike and wave discharges

    Get PDF
    Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al

    Disorder-specific and shared neurophysiological impairments of attention and inhibition in women with attention-deficit/hyperactivity disorder and women with bipolar disorder

    Get PDF
    Background. In adults, attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) have certain overlap- ping symptoms, which can lead to uncertainty regarding the boundaries of the two disorders. Despite evidence of cog- nitive impairments in both disorders separately, such as in attentional and inhibitory processes, data on direct comparisons across ADHD and BD on cognitive–neurophysiological measures are as yet limited. Method. We directly compared cognitive performance and event-related potential measures from a cued continuous performance test in 20 women with ADHD, 20 women with BD (currently euthymic) and 20 control women. Results. The NoGo-N2 was attenuated in women with BD, reflecting reduced conflict monitoring, compared with women with ADHD and controls (both p < 0.05). Both ADHD and BD groups showed a reduced NoGo-P3, reflecting inhibitory control, compared with controls (both p < 0.05). In addition, the contingent negative variation was significantly reduced in the ADHD group (p = 0.05), with a trend in the BD group (p = 0.07), compared with controls. Conclusions. These findings indicate potential disorder-specific (conflict monitoring) and overlapping (inhibitory con- trol, and potentially response preparation) neurophysiological impairments in women with ADHD and women with BD. The identified neurophysiological parameters further our understanding of neurophysiological impairments in women with ADHD and BD, and are candidate biomarkers that may aid in the identification of the diagnostic boundaries of the two disorders

    When a photograph can be heard: Vision activates the auditory cortex within 110 ms

    Get PDF
    As the makers of silent movies knew well, it is not necessary to provide an actual auditory stimulus to activate the sensation of sounds typically associated with what we are viewing. Thus, you could almost hear the neigh of Rodolfo Valentino's horse, even though the film was mute. Evidence is provided that the mere sight of a photograph associated with a sound can activate the associative auditory cortex. High-density ERPs were recorded in 15 participants while they viewed hundreds of perceptually matched images that were associated (or not) with a given sound. Sound stimuli were discriminated from non-sound stimuli as early as 110 ms. SwLORETA reconstructions showed common activation of ventral stream areas for both types of stimuli and of the associative temporal cortex, at the earliest stage, only for sound stimuli. The primary auditory cortex (BA41) was also activated by sound images after ∼ 200 ms

    New Platform Technology for Comprehensive Serological Diagnostics of Autoimmune Diseases

    Get PDF
    Antibody assessment is an essential part in the serological diagnosis of autoimmune diseases. However, different diagnostic strategies have been proposed for the work up of sera in particular from patients with systemic autoimmune rheumatic disease (SARD). In general, screening for SARD-associated antibodies by indirect immunofluorescence (IIF) is followed by confirmatory testing covering different assay techniques. Due to lacking automation, standardization, modern data management, and human bias in IIF screening, this two-stage approach has recently been challenged by multiplex techniques particularly in laboratories with high workload. However, detection of antinuclear antibodies by IIF is still recommended to be the gold standard method for antibody screening in sera from patients with suspected SARD. To address the limitations of IIF and to meet the demand for cost-efficient autoantibody screening, automated IIF methods employing novel pattern recognition algorithms for image analysis have been introduced recently. In this respect, the AKLIDES technology has been the first commercially available platform for automated interpretation of cell-based IIF testing and provides multiplexing by addressable microbead immunoassays for confirmatory testing. This paper gives an overview of recently published studies demonstrating the advantages of this new technology for SARD serology

    Prospects of micromass culture technology in tissue engineering

    Get PDF
    Tissue engineering of bone and cartilage tissue for subsequent implantation is of growing interest in cranio- and maxillofacial surgery. Commonly it is performed by using cells coaxed with scaffolds. Recently, there is a controversy concerning the use of artificial scaffolds compared to the use of a natural matrix. Therefore, new approaches called micromass technology have been invented to overcome these problems by avoiding the need for scaffolds. Technically, cells are dissociated and the dispersed cells are then reaggregated into cellular spheres. The micromass technology approach enables investigators to follow tissue formation from single cell sources to organised spheres in a controlled environment. Thus, the inherent fundamentals of tissue engineering are better revealed. Additionally, as the newly formed tissue is devoid of an artificial material, it resembles more closely the in vivo situation. The purpose of this review is to provide an insight into the fundamentals and the technique of micromass cell culture used to study bone tissue engineering

    Auditory temporal processing in healthy aging: a magnetoencephalographic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years.</p> <p>Results</p> <p>The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants.</p> <p>Conclusion</p> <p>The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms.</p

    Divergent Cortical Generators of MEG and EEG during Human Sleep Spindles Suggested by Distributed Source Modeling

    Get PDF
    Background: Sleep spindles are,1-second bursts of 10–15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phaselocked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators. Methodology/Principal Findings: We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere. Conclusions/Significance: The heterogeneity of MEG sources implies that multiple generators are active during huma
    • …
    corecore