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Abstract. Does Independent Component Analysis (ICA) denature EEG
signals? We applied ICA to two groups of subjects (mild Alzheimer
patients and control subjects). The aim of this study was to examine
whether or not the ICA method can reduce both group differences and
within-subject variability. We found that ICA diminished Leave-One-
Out root mean square error (RMSE) of validation (from 0.32 to 0.28),
indicative of the reduction of group difference. More interestingly, ICA
reduced the inter-subject variability within each group (σ = 2.54 in the
δ range before ICA, σ = 1.56 after, Bartlett p = 0.046 after Bonfer-
roni correction). Additionally, we present a method to limit the impact
of human error (' 13.8%, with 75.6% inter-cleaner agreement) during
ICA cleaning, and reduce human bias. These findings suggests the novel
usefulness of ICA in clinical EEG in Alzheimer’s disease for reduction of
subject variability.

1 Introduction

Independent component analysis (ICA) is a method for recovering underlying
signals from linear mixtures of those signals. Independent component analysis
(ICA) is especially useful to reject EEG artifacts [1], exploiting statistical inde-
pendent criteria to separate EEG sources, which allows to remove artifacts and
clean EEG [2–4]. Therefore, it has been used for analysis of various physiological
time series including the EEG. However, whether the ICA alters the EEG distri-
butions or not is unclear. In addition to instrumental noise and environmental
noise, movement and other physiological noise (ocular, electromyographic, elec-
trodermal, electrovascular, and respiratory signals) may interfere with the EEG
in the form of artifacts. Artifacts in the EEG can be defined as any potential
difference due to an extra-cerebral source [5]. Particularly, muscle artifacts are
especially problematic, because they can appear in EEG patterns which are
very hard to differentiate from the EEG signals: the frequency range of muscle
artifacts and the EEG overlap to a high degree [6].
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The aim of this study was to address the significant question: is it a valid
approach to improve EEG signals using Independent component analysis (ICA)?
We investigated the effects of ICA cleaning on a database recorded from patients
with Alzheimer’s disease (mild AD, early stage) and healthy control subjects. It
is of importance to investigate the possible application of ICA to AD, because
the early diagnosis of AD using EEGs is very critical [7]. Previous studies used
ICA to enhance differences between control subjects and Alzheimer patients, but
the effect on EEG quality was only assessed by estimating the group separation
(see e.g. [3, 8, 9] - which is not sufficient to prove that ICA preserved EEG data.
In this study, we used the ICA to show the following results:

1. Human performance displayed a high variability. We used a simple method
to combine signals cleaned without concertizing by three scientist, which
provided us with an optimally cleaned database (in respect to an Euclidean
distance).

2. With proper precautions, ICA cleaning did not denature EEG signals.

Using the simple cleaning rules introduced in this study, it shall be possible to
design a semi-automatic method to improve EEG quality.

2 Methods

Computations were done with Matalb (The MathWorks, Inc.), ICA cleaning
was performed using ICALAB ver. 3 with automatic sorting of independent
components [10].

2.1 EEG Data - Patients With MildAD

These data were obtained using a strict protocol from Derriford Hospital, Ply-
mouth, U.K. and had been collected using normal hospital practices [11]. EEGs
were recorded during a resting period with various states: awake, drowsy, alert
and resting states with eyes closed and open. All recording sessions and ex-
periments proceeded after obtaining the informed consent of the subjects or
the caregivers and were approved by local institutional ethics committees. EEG
dataset is composed of 24 healthy control subjects (age: 69.4+11.5 years old; 10
males) and 17 patients with mild AD (age: 77.6+10.0 years old; 9 males). The
patient group underwent full battery of cognitive tests (Mini Mental State Ex-
amination, Rey Auditory Verbal Learning Test, Benton Visual Retention Test,
and memory recall tests). The two groups are not perfectly age-matched, which
might pose bias later on, but it was shown that no major effect was found due to
this disparity [11]. The EEG time series were recorded using 19 electrodes dis-
posed according to Maudsley system, similar to the 10-20 international system,
at a sampling frequency of 128 Hz. EEGs were band-pass filtered with digital
2nd order Butterworth filter (forward and reverse filtering) between 0.5 and 30
Hz (a sampling rate of 128 Hz means that frequencies above 25 Hz cannot be
reliably studied [12]).



2.2 Independent Component Analysis

Blind Source Separation (BSS) consists in recovering a set of unknown sources
from their observed mixture x. The linear and instantaneous models of BSS can
be formulated as:

x = As, (1)

where s represents a data matrix having as rows the observed signals, and A
is the mixing matrix. According to the currently prevailing view of EEG signal
processing, a signal can be modeled as a linear mixture of a finite number of brain
sources, with additive noise(see e.g. [2–4]). Therefore, blind source separation
techniques can be used advantageously for decomposing raw EEG data to brain
signal subspace and noise subspace. If sources are supposed to be independent,
then BSS can be called ICA.

The Second-Order Blind Identification (SOBI) algorithm is a well-known
blind source separation (BSS) method for source signals with temporal struc-
tures and distinct spectra (AR processes). It already proved to be useful in many
biomedical applications. A weight adjusted version of SOBI was suggested in [14].
SOBI jointly (approximately) diagonalizes time-delayed covariance matrices for
many time delays. However, SOBI algorithm does not specify how many and
which time delays to choose. An efficient weight adjusted variant of SOBI called
IWASOBI [13, 15] was recently developped to solve this problem. The original
weight adjusted SOBI used a standard AJD (Approximative Joint Diagonaliza-
tion) algorithm.IWASOBI uses instead an AJD based on family of WEDGE1

algorithms [13]. For IWASOBI the number of jointly diagonalized covariance
matrices can be relatively low in comparison to the standard SOBI while per-
formance can be considerably higher. This algorithm allows reliable separation
of 100+ sources with temporal structure (autoregressive sources) in order of
seconds. In our experiments we used the IWASOBI algorithm implemented in
ICALAB ver.3 [10].

2.3 Cleaning Rules

Three EEG researchers visually inspected EEGs, and chose the least corrupted
(artifact-clean) continuous 20 sec interval of each recording for the analysis. Each
trial was then decomposed using ICA. Sources were ordered using a kurtosis
measure, and the researchers cleared up to seven sources per trial corresponding
to artifacts (eye movements, EMG corruption, EKG, etc), using three criteria
(see Fig.1):

1. Abnormal scalp distribution of the reconstructed channels (only a few elec-
trodes contribute to the source, with an isolated topography)

2. Abnormal wave shape (drifts, eye blinks, sharp waves, etc.)
3. Source of abnormally high amplitude (≥ 100 µV)

1 Weighted Exhaustive Diagonalization using Gauss itEration



We have focused our attention mainly on the smallest and largest values of
kurtosis (i.e. a measure of sparsity and distance to Gaussianity), which are more
likely to be representative of artifacts. After this step, the remaining sources
were back-projected onto the scalp, yielding an artifact clean data.
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Fig. 1. Examples of artifacts. (a) abnormal scalp distribution of the reconstructed
channels; (b) abnormal wave shape; (c) source of abnormally high amplitude.

2.4 Optimal Combination of Three Cleanings

Each of the three researchers cleaned, with the above rules, raw data from all
subjects (EEG from mildAD patients or control subjects) sn with n ∈ [1 −
41]. This produced three cleaned databases: D1,D2 and D3. Our objective was
to combine efficiently these Di databases into one optimal database Ω. Each
database Di includes cleaned EEG2 ci,n with n ∈ [1− 41]. We computed for all
ci,n the averaged Fourier relative power Φ(i, n, f) over all E electrodes:

Φ(i, n, f) =
1
E

E∑
e=1

Φi,n(e, f). (2)

Where Φi,n(e, f) is the Fourier relative power of the electrode e with frequencies
f in F = [1 − 25] Hz, for the cleaned EEG ci,n. Fourier power was computed
using the Welch method (1 sec. Hanning windows with 50% overlap). We then
computed for each pair of cleaned EEG (ci,n, cj,n) the Euclidian distance ∆:

∆(n, i, j) =
√ ∑

finF

[Φ(ci,n, f)−Φ(cj,n, f)]. (3)

This distance is symmetric, with values in R+, and ci,n ' cj,n ⇒ ∆(n, i, j) ' 0.
∆ was used to evaluate significant differences between cleanings. To this end we
used a Monte-Carlo approach to estimate the distribution of randomly matched
surrogate data. The surrogate database was constituted of r = 10000 draws of
randomly matched data from the three cleaned databases. We computed the r

2 corresponding to the raw data of sn: for each subject sn exist three cleaned EEG,
c1,n, c2,n, and c3,n



distances ∆(r, 1, 2) of each pair, which allowed us to estimate the distribution
of non-matched data. We fixed the significance threshold τ = 1.1%, as the fifth
percentile of this distribution (if ∆(n, i, j) ≤ τ , we reject the hypothesis of having
a significant difference between cleaners i and j for subject sn with a probability
p = 0.053).

For each of subject sn, n ∈ [1−41], we iteratively selected the best candidate
ωn ∈ Ω within the corresponding cleaned EEG triplet [c1,n, c2,n, c3,n] using the
following decision rule:

1. Equivalent case: if ∀(ci,n, cj,n),∆(n, i, j) < τ , we select randomly the cleaned
EEG ωn.

2. Consensus case: if ∀(ci,n, cj,n), ∃ only (cu,n, cv,n),∆(n, u, v) ≥ τ (or con-
versely ∆(n, v, u) ≥ τ), we select the remaining cleaned EEG ωn = cw,n

with w 3 [u, v] (cw,n is a consensus of the two others cleaned EEG).
3. Error case: if ∃u, ∀i,∆(n, u, i) ≥ τ , we select randomly ωn = cv,n with v 6= u

(cu,n is identified as an error).
4. Reject case: if ∀(ci,n, cj,n),∆(n, i, j) ≥ τ , the subject sn has to be rejected.

3 Results

3.1 Variability Between Cleaners

The cleaned data were distributed in the four above categories as follows: 75.6%
equivalent cases, 17.1% consensus cases, 7.3% error cases and 0% reject cases4. In
other words, we could clean 100% of the database without rejection. From these
numbers we can also obtain an approximate estimation of variability between
human cleaners:

– Inter-cleaner agreement ' 75.6%
– Human error rate for one isolated cleaner ' 13.8%.
– Expected cleaning error % between two persons ' 10.6%.

This indicates that EEG data containing a significant number of subjects, cleaned
by only one or two persons, is not so reliable.

3.2 Group Differences

Mann-Whitney z-scores were estimated before and after ICA cleaning. We ob-
served, for all frequency ranges, that the differences between mildAD patients
and control subjects were magnified by ICA (see Table 1 and Fig.2). We ag-
gregated the Fourier power into five regions (frontal, temporal left and right,
central and occipital). Linear discriminant analysis was applied before and after
ICA cleaning. We estimated Leave-One-Out root mean square error (RMSE) of
validation: it dropped from 0.32 to 0.28 (training RMSE dropped from 0.30 to
0.26). This shows that the topography of EEG relative powers after ICA cleaning
was more consistent than those before cleaning.
3 A probability p = 0.01 corresponds to a threshold τ = 0.89%
4 This result is off course dependant on the threshold τ .



Table 1. Mann-Whitney Zscore before and after ICA, for each frequency range (com-
paring mildAD patients vs. control subjects). Higher absolute value of z-score means
that p-value is lower (i.e. that data is better separated).

Data δ (1-4 Hz) θ (4-8 Hz) α (8-12 Hz) β (12-25 Hz)

Before ICA 3.68 2.83 -4.39 -3.78

After ICA 3.76 4.82 -4.58 -4.42

3.3 Inter-Subject Variability

After ICA cleaning, we examine if EEG was not denatured. This can be observed
through the distribution of Fourier power in the two groups: did the subjects of
control and patient group resembled each-other more after ICA, or instead did
they differ more (in this case, EEG is denatured).
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Fig. 2. Boxplot of Fourier relative power before and after ICA. Central line represents
the median, dashed lines covers inter-quartile range, cross are outliers. ICA magnified
the group differences.

We evaluated the inter-subject variability in both groups, by comparing their
variance using a Bartlett test for homoscedasticity (before vs. after ICA). Vari-
ance was never shown to increase (even without Bonferroni correction), instead
a significant decrease was found in the δ range for the control group (standard
deviation σ = 2.54 before ICA, σ = 1.56 after, Bartlett p = 0.046 after Bonfer-
roni correction). This decrease in inter-subject variability is also found generally:
ICA subjects became closer to their group’s mass centers (see Fig.3).

4 Discussion and Conclusion

We found that ICA cleaning improved the separation between mildAD patients
and control subjects (confirming previous studies [4, 8, 9]). Moreover, we found
a more consistent topographical distribution of EEG power after ICA. We could
conjecture two possibilities concerning the effect of ICA on EEG quality:



0

5

10

15

0
5

10
15

0

5

10

15

α

Before ICA
After ICA

θ
β 0

5

10

15

0

5
10

15

0

5

10

15

α

θ

β

Fig. 3. Inter-subject variability of all subjects before and after ICA. Each control
subject (circle) and mildAD patient (cross) are plotted a spatial representation of their
Fourier power in the three lower frequency ranges - δ (1-4 Hz), θ (4-8 Hz) and α
(8-12 Hz). Not only were subjects regrouped in their respective classes by ICA, but
separation between the two groups was improved.

1. Fourier power distribution changed after ICA, the variability in at least one
group increased (i.e., the variance of Fourier power increased in one group).
In this case, ICA cleaning denatured EEG signals, as the data quality was
lowered.

2. Fourier power distribution changed after ICA, the variability did not in-
crease, and eventually decreased (i.e., the variance of Fourier power remained
stable in both groups or decreased). In this case, ICA cleaning improved the
quality of EEG signals.

We found the second situation, as a variance decrease in the control group was
the only significant effect. We can therefore conclude that ICA cleaning does
not denature EEG signals, and instead improves their quality. This results was
however obtained with a combined cleaning done by three independant persons.
Without such combination, human error might compensate with the benefits of
ICA (error rate ' 13.8%). Other ways to combine cleaning obtained from several
persons could be imagined. We also attempted to average spectrograms of each
database: i.e. averaging each subject’s three occurrences instead of selecting
one occurrence. This led to very similar results, EEG data was not denatured.
However, we believe that averaging does not prevent the intrusion of seriously
flawed data, whereas our selection approach is more preemptive.

These results suggests a new direction for EEG studies using ICA: develop-
ping organized methodologies of cleaning, i.e. coordinated semi-automatic meth-
ods of EEG cleaning. In other words, instead of only developing new algorithms,
we should endeavor to find markers of artifacts and semi-automatic methods of
cleaning. An ideal toolbox should provide synthetic information about each ICA
sources (indicating for instance a pre-diagnostic of anomalies); human clean-
ers would then perform a cleaning based on this information (a semi-automatic
cleaning).
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