5,102 research outputs found

    Analytical computation of the off-axis Effective Area of grazing incidence X-ray mirrors

    Full text link
    Focusing mirrors for X-ray telescopes in grazing incidence, introduced in the 70s, are characterized in terms of their performance by their imaging quality and effective area, which in turn determines their sensitivity. Even though the on-axis effective area is assumed in general to characterize the collecting power of an X-ray optic, the telescope capability of imaging extended X-ray sources is also determined by the variation in its effective area with the off-axis angle. [...] The complex task of designing optics for future X-ray telescopes entails detailed computations of both imaging quality and effective area on- and off-axis. Because of their apparent complexity, both aspects have been, so far, treated by using ray-tracing routines aimed at simulating the interaction of X-ray photons with the reflecting surfaces of a given focusing system. Although this approach has been widely exploited and proven to be effective, it would also be attractive to regard the same problem from an analytical viewpoint, to assess an optical design of an X-ray optical module with a simpler calculation than a ray-tracing routine. [...] We have developed useful analytical formulae for the off-axis effective area of a double-reflection mirror in the double cone approximation, requiring only an integration and the standard routines to calculate the X-ray coating reflectivity for a given incidence angle. [...] Algebraic expressions are provided for the mirror geometric area, as a function of the off-axis angle. Finally, the results of the analytical computations presented here are validated by comparison with the corresponding predictions of a ray-tracing code.Comment: 12 pages, 11 figures, accepted for publication in "Astronomy & Astrophysics", section "Instruments, observational techniques, and data processing". Updated version after grammatical revision and typos correctio

    Effect of vasopressin 1b receptor blockade on the hypothalamic-pituitary-adrenal response of chronically stressed rats to a heterotypic stressor

    Get PDF
    Exposure to chronic restraint (CR) modifies the hypothalamic–pituitary–adrenal (HPA) axis response to subsequent acute stressors with adaptation of the response to a homotypic and sensitization of the response to a heterotypic stressor. Since vasopressin (AVP) activity has been reported to change during chronic stress, we investigated whether this was an important factor in HPA facilitation. We therefore tested whether vasopressin 1b receptor (AVPR1B) blockade altered the ACTH and corticosterone response to heterotypic stressors following CR stress. Adult male rats were exposed to CR, single restraint, or were left undisturbed in the home cage. Twenty-four hours after the last restraint, rats were injected with either a AVPR1B antagonist (Org, 30 mg/kg, s.c.) or vehicle (5% mulgofen in saline, 0.2/kg, s.c.) and then exposed to either restraint, lipopolysaccharide (LPS) or white noise. CR resulted in the adaptation of the ACTH and corticosterone response to restraint and this effect was not prevented by pretreatment with Org. Although we found no effect of CR on LPS-induced ACTH and corticosterone secretion, both repeated and single episodes of restraint induced the sensitization of the ACTH, but not corticosterone response to acute noise. Pretreatment with Org reduced the exaggerated ACTH response to noise after both single and repeated exposure to restraint

    On the strong connectivity of the 2-Engel graphs of almost simple groups

    Full text link
    The Engel graph of a finite group GG is a directed graph encoding the pairs of elements in GG satisfying some Engel word. Recent work of Lucchini and the third author shows that, except for a few well-understood cases, the Engel graphs of almost simple groups are strongly connected. In this paper, we give a refinement to this analysis

    On the orders of zeros of irreducible characters

    Get PDF
    Let G be a finite group and p a prime number. We say that an element g in G is a vanishing element of G if there exists an irreducible character χ of G such that χ(g)=0. The main result of this paper shows that, if G does not have any vanishing element of p-power order, then G has a normal Sylow p-subgroup. Also, we prove that this result is a generalization of some classical theorems in Character Theory of finite groups

    On the vanishing prime graph of finite groups

    Get PDF
    Let G be a finite group. An element g 08 G is called a vanishing element of G if there exists an irreducible complex character \u3c7 of G such that \u3c7(g) = 0. In this paper we study the vanishing prime graph \u393(G), whose vertices are the prime numbers dividing the orders of some vanishing element of G, and two distinct vertices p and q are adjacent if and only if G has a vanishing element of order divisible by pq. Among other things we prove that, similarly to what holds for the prime graph of G, the graph \u393(G) has at most six connected components

    Bounds on the diameter of Cayley graphs of the symmetric group

    Get PDF
    In this paper we are concerned with the conjecture that, for any set of generators S of the symmetric group of degree n, the word length in terms of S of every permutation is bounded above by a polynomial of n. We prove this conjecture for sets of generators containing a permutation fixing at least 37% of the points.Comment: 17 pages, 6 table

    On the vanishing prime graph of solvable groups

    Get PDF
    Let G be a finite group, and Irr(G) the set of irreducible complex characters of G. We say that an element g is an element of G is a vanishing element of G if there exists chi in Irr(G) such that chi(g) = 0. In this paper, we consider the set of orders of the vanishing elements of a group G, and we define the prime graph on it, which we denote by Gamma(G). Focusing on the class of solvable groups, we prove that Gamma(G) has at most two connected components, and we characterize the case when it is disconnected. Moreover, we show that the diameter of Gamma(G) is at most 4. Examples are given to round out our understanding of this matter. Among other things, we prove that the bound on the diameter is best possible, and we construct an infinite family of examples showing that there is no universal upper bound on the size of an independent set of Gamma(G)
    corecore