
ON THE VANISHING PRIME GRAPH OF FINITE GROUPS
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Abstract. Let G be a finite group. An element g ∈ G is called a vanishing

element of G if there exists an irreducible complex character χ of G such that

χ(g) = 0. In this paper we study the vanishing prime graph Γ(G), whose
vertices are the prime numbers dividing the orders of some vanishing element

of G, and two distinct vertices p, q are adjacent if and only if G has a vanishing

element of order divisible by pq. Among other things we prove that, similarly
to what holds for the prime graph of G, the graph Γ(G) has at most six

connected components.
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1. Introduction

The prime graph of a finite group G, which in this paper we shall denote by Π(G),
is the simple undirected graph defined as follows: the vertices of Π(G) are the prime
numbers dividing the order of G, and two distinct vertices p, q are adjacent if and
only if G has an element of order divisible by pq. This graph was introduced by K.
Gruenberg and O. Kegel and, since then, several authors studied its nature and its
influence on the group structure of G. For instance, it is known that Π(G) has at
most six connected components (see [16] or Theorem 6.3).

We focus our attention on a particular subgraph of Π(G), which encodes nontriv-
ial information arising from the set Irr(G) of irreducible complex characters of G. A
vanishing element of G is an element g ∈ G such that χ(g) = 0 for some χ ∈ Irr(G).
Let Van(G) denote the set of vanishing elements of G. Now, the vanishing prime
graph of G, denoted by Γ(G), is the graph whose vertices are the prime divisors of
the orders of the elements in Van(G), and two distinct vertices p, q are adjacent if
and only if Van(G) contains an element of order divisible by pq.

The vanishing prime graph was introduced in [4], where an investigation on
Γ(G) was made in the context of finite solvable groups. In particular, among other
things, it was proved that Γ(G) has at most two connected components in that
case. (We refer to the Introduction of [4] for a more detailed discussion concerning
this research area.) In the present paper, we extend this kind of investigation also
to nonsolvable finite groups.

Theorem A. Let G be a finite group. Then Γ(G) has at most six connected
components.
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Note that, as can be checked by direct inspection in [2], if G is the sporadic simple
group J4, then we have Γ(G) = Π(G) and Γ(G) has six connected components.
Therefore, the bound provided by the above theorem is best possible.

Theorem A is obtained using the following Theorem B. We denote by n(G) the
number of connected components of a graph G.

Theorem B. Let G be a finite nonsolvable group. If Γ(G) is disconnected, then
G has a unique nonabelian composition factor S, and n(Γ(G)) ≤ n(Π(S)) unless G
is isomorphic to A7.

The alternating group A7 is a genuine exception to the above theorem, since it
can be easily checked (in [2], for instance) that n(Γ(A7)) = 4, whereas n(Π(A7)) = 3.
In fact, in Section 6 we shall see that A7 is the unique nonabelian simple group S
such that Γ(S) 6= Π(S).

A key tool in the proof of Theorem B is the following Theorem C, which describes
the structure of a finite group G such that a prime divisor of |G| does not appear
as a vertex of Γ(G). We observe that Theorem C is a strengthening of [3, Corollary
3] and that its Part (b) is in turn a consequence of Theorem 3.1 of this paper.

Theorem C. Let G be a finite group, p a prime divisor of |G|, and P a Sylow
p-subgroup of G. If G does not have any vanishing element of order divisible by p,
then the following conclusions hold:

(a) P is normal in G;
(b) eitherG is abelian, orG/Op′(G) is a Frobenius group with kernel POp′(G)/Op′(G),

and Op′(G) is nilpotent.

We prove Theorem C in Section 3, and Theorems A and B in Section 5. After
that, in Section 6, we discuss some aspects of the relationship between the graphs
Γ(G) and Π(G). In particular, we see that Theorem A and Theorem B also hold
with Π(G) in place of Γ(G), but we present examples showing that the two graphs
are significantly different in general.

We stress that our proofs of the results in this paper depend on the classification
of the finite simple groups.

2. Preliminary results

Throughout the whole paper, every group is assumed to be a finite group, and
the set of prime divisors of the order of a group G is denoted by π(G).

In this section we present some preliminary results which will turn out to be
useful in the sequel. We start by noticing that, by a classical theorem of W.
Burnside, every nonlinear irreducible character vanishes on some group element. In
particular, Γ(G) is the empty graph if and only if G is abelian.

In the following lemma we collect some basic remarks relating the vanishing ele-
ments of a group G and the vanishing elements of the quotients of G. In particular,
note that Lemma 2.1(a) shows that Γ(G/N) is a subgraph of Γ(G).

Lemma 2.1. Let N be a normal subgroup of G.

(a) If xN ∈ Van(G/N), then xN ⊆ Van(G).
(b) Assume that N has a complement H in G, and let A,B be subgroups of H. If

B \A ⊆ Van(H), then BN \AN ⊆ Van(G).
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Proof. Every irreducible character of G/N can be viewed, by inflation, as an irre-
ducible character of G. So (a) follows immediately. Let now ϕ : H → G/N be the
canonical isomorphism defined by ϕ(x) = xN , for x ∈ H. Then ϕ(B) \ ϕ(A) =
(BN/N) \ (AN/N) ⊆ Van(G/N), and hence BN \AN ⊆ Van(G) by Part (a).

The next few results will play a role in the proof of Theorem C.

Lemma 2.2. Let M and N be normal subgroups of G, and L a subgroup of N .
Assume that there exists ψ ∈ Irr(N) such that, for every y ∈ G and x ∈ Ly \M ,
we have ψ(x) = 0. Then L \M ⊆ Van(G).

Proof. Choose χ ∈ Irr(G) lying over ψ. If x ∈ L \ M , then χ(x) = χN (x) =
e
∑
y∈R ψ(xy), for some subset R of G and some positive integer e. Since xy ∈

Ly \M , we see that ψ(xy) = 0 for every y ∈ R. Hence χ(x) = 0 and x ∈ Van(G).

Let G be a group, and let V be a chief factor of G (that is, there are two normal
subgroups A and B of G such that V = A/B is a minimal normal subgroup of
G/B). In what follows, we denote by CG(V ) the subgroup C of G containing B
and such that C/B = CG/B(V ). Also, if M is a normal subgroup of G, we say
that 1 = M0 ≤M1 ≤ · · · ≤Mn = M is a G-chief series of M if it is part of a chief
series of G passing through M .

Lemma 2.3. Let G be a group, and V an abelian chief factor of G. Let N �G be
such that NCG(V )/CG(V ) is abelian. Then N \CG(V ) ⊆ Van(G).

Proof. Let A and B be normal subgroups of G such that V = A/B. Replacing G
with the quotient group G/B, it is easily seen that we can assume B = 1. So V is
a minimal normal subgroup of G and it can be regarded as a simple G-module over
a field of p elements, for a suitable prime p. Set G = G/CG(V ), and adopt the bar
convention. By Clifford’s theorem, V is a semisimple (and faithful) N -module. This
forces Op(N) to be trivial, and therefore, as N is abelian, we get (|N |, |V |) = 1. As

is well known, it follows that there exists a regular orbit in the action of N on the
elements of V . Applying Glauberman correspondence ([6, Theorem 18.9]), there
exists φ ∈ Irr(V ) such that the inertia subgroup IN (φ) of φ in N is trivial, whence
IN (φ) = N ∩CG(V ).

Now, let χ be an irreducible character of G lying over φ. By Clifford Correspon-
dence we have χ = ψG, where ψ is an irreducible character of I = IG(φ). For every
g in G, we get

Ig ∩N = (I ∩N)g = IN (φ)g ≤ CG(V )g = CG(V ).

As χ vanishes in G \
⋃
g∈G I

g, the desired conclusion follows.

Lemma 2.4. Let M ≤ N ≤ G, with M and N normal in G and (|M |, |N/M |) = 1.
Assume that M is minimal normal in G or that M is nilpotent. If CN (M) ≤ M
and N/M is abelian, then N \M ⊆ Van(G).

Proof. If M is minimal normal in G, then this is [3, Lemma 2.9]. So, assume that
M is nilpotent. Let 1 = M0 ≤M1 ≤ · · · ≤Mn = M be a G-chief series of M . Then
each factor Vi = Mi/Mi−1, i = 1, 2, . . . , n, is an abelian chief factor of G. Also,
since M is nilpotent, it follows that M lies in C =

⋂n
i=1 CN (Vi), whence N/CN (Vi)

is abelian for all i ∈ {1, ..., n}. By Lemma 2.3 it is then enough to show that C
actually coincides with M . In fact, let H be a complement for M in N : if h ∈ H
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centralizes every factor Vi then, by coprimality, h ∈ CN (M) ≤ M and therefore
h = 1. Now, by Dedekind’s law, we get C = M(C∩H) ≤M , and the result follows.

Proposition 2.5. Let G be a group, and let M and N be normal subgroups of G
such that M ∩ N = 1. Assume that there is an element m ∈ M ∩ Van(G). Then
mn ∈ Van(G) for all n ∈ N .

Proof. Let χ be an irreducible character of G such that χ(m) = 0, and let α be an
irreducible constituent of χM . We get

0 = χ(m) = e

s∑
i=1

αgi(m),

where e = 〈χM , α〉 6= 0, and {g1, ..., gs} is a right transversal for the inertia subgroup
IG(α) of α in G.

Consider now the irreducible character α × 1N of MN . It is easy to check
that IG(α × 1N ) = IG(α). Let γ be an irreducible character of IG(α × 1N ) lying
over α × 1N , and set ψ = γG. Notice that, by Clifford Correspondence, we get
ψ ∈ Irr(G). Then, setting f = 〈ψMN , α× 1N 〉, for every n in N we have

ψ(mn) = f

s∑
i=1

(α× 1N )gi(mn) = f

s∑
i=1

αgi(m) = 0 ,

and mn is in Van(G), as claimed.

Corollary 2.6. Let G be a group and K a nilpotent normal subgroup of G. If
K ∩Van(G) 6= ∅, then there exists g ∈ K ∩Van(G) whose order is divisible by every
prime in π(K).

Proof. Let m be in K ∩ Van(G) and π the set of primes dividing o(m). Let N be
the Hall π′-subgroup of K. By Proposition 2.5, it suffices to take g = mn, where
n ∈ N has order divisible by every prime in π′ (if any).

Let p be a prime number, and χ an irreducible character of G. We recall that χ
is said to be of p-defect zero if p does not divide |G|/χ(1). By a well-known result
of R. Brauer ([9, Theorem 8.17]), if χ is an irreducible character of p-defect zero
of G then, for every g ∈ G such that p divides the order o(g), we have χ(g) = 0.
In view of that, irreducible characters of p-defect zero appear to be relevant when
dealing with vanishing elements.

In particular, the following Lemma 2.7 will turn out to be useful for our purposes.

Lemma 2.7. Let G be a group, N a normal subgroup of G, and p a prime divisor
of |N |. If N has an irreducible character of p-defect zero, then every element of N
of order divisible by p is a vanishing element of G.

Proof. Take ψ ∈ Irr(N) of p-defect zero, and choose χ ∈ Irr(G) lying over ψ. By
Clifford’s theorem, χN is a sum of G-conjugates ψi of ψ. As ψi(1) = ψ(1), every
ψi is an irreducible character of p-defect zero of N . Hence every ψi vanishes on
every element of N of order divisible by p. If now x is such an element, we get
χ(x) =

∑
i ψi(x) = 0, whence x ∈ Van(G).

Next, we recall a theorem from [5], which provides significant information con-
cerning the existence of irreducible characters of p-defect zero for nonabelian simple
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groups. Also this result, together with the subsequent corollary, will turn out to be
useful in the proof of Theorem C.

Theorem 2.8. ([5, Corollary 2]). Let S be a nonabelian simple group, and p a
prime divisor of |S|. Then S has an irreducible character of p-defect zero unless
one of the following holds.

(a) The prime p is 2, and S is isomorphic to either M12, M22, M24, J2, HS, Suz,
Ru, Co1, Co3, BM or An, where n 6= 2m2 +m and n 6= 2m2 +m+ 2 for every
integer m.

(b) The prime p is 3, and S is isomorphic to either Suz, Co3 or An, where 3n+1 =
m2d with d squarefree and divisible by some prime r ≡ 2 (mod 3).

Corollary 2.9. Let G be a group, N a nonabelian minimal normal subgroup of
G, and p a prime divisor of |N |. If p ≥ 5, then every element of N having order
divisible by p is a vanishing element of G. In particular, N ∩Van(G) 6= ∅.

Furthermore, if N is not a simple group then, for every q ∈ π(N) with q 6= p,
there exists g ∈ Van(G) ∩N of order divisible by pq.

Proof. Write N = S1 × · · · × Sn, where Si ' S and S is a nonabelian simple group
whose order is divisible by p. As p ≥ 5, by Theorem 2.8 there exists an irreducible
character θ of S of p-defect zero. Let ψ = θ × · · · × θ ∈ Irr(N). Since ψ is clearly
a character of p-defect zero of N , the first claim of the statement follows from
Lemma 2.7. Moreover, by Burnside’s pαqβ-theorem, there certainly exists a prime
divisor p ≥ 5 of |N |. Hence, N ∩Van(G) 6= ∅.

For the second claim, assume n > 1. Let x ∈ S1 be of order p, and let q ∈ π(N)
with q 6= p. As q ∈ π(S2), we can choose y ∈ S2 of order q. Now g = xy ∈ N is an
element of order pq, and therefore g ∈ Van(G) ∩N .

In the proof of Theorem B, we shall take advantage of some information con-
cerning characters of sporadic simple groups and alternating groups. These infor-
mation, yielded by Proposition 2.10, will be useful when dealing with nonabelian
simple groups which fail to have irreducible characters of p-defect zero for some
prime p, i.e. groups in the list of Theorem 2.8.

The character table of symmetric and alternating groups is well known (see for
instance [11]). In particular, there exists a natural bijection between the irreducible
characters of Sn and the partitions of n. Also, given the partition π of n corre-
sponding to the character χ of Irr(Sn), we have that χAn

is irreducible if and only
if the Ferrers-Young diagram of π is not self-associate, i.e. symmetric. In the proof
of Proposition 2.10 we make use of the Murnaghan-Nakayama formula ([11, 2.4.7]).
Also, we denote by χπ the irreducible character of Sn corresponding to the partition
π of n and we identify (up to conjugation) an element of Sn with a partition of n,
i.e. its “cycle type” ([11, 1.2.4]).

Proposition 2.10. Let S be a sporadic simple group, or an alternating group on n
letters with n ≥ 8. Then S has an irreducible character χ which extends to Aut(S)
and an element g of order 6 such that χ(g) = 0.

Proof. As regards sporadic simple groups, the claim is easily proved by direct in-
spection (see [2]). Therefore, we shall assume S ' An, and we aim to produce a
partition π, together with an element g ∈ S, such that the corresponding character
χπ and g satisfy the desired conditions.
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Setm = n−4. Ifm ≡ 2 mod 3, then take π = (m, 3, 1) and g = (3(m−2)/3, 22, 12).
If m ≡ 1 mod 3 and m 6= 4, then take π = (m, 2, 12) and g = (3(m−1)/3, 22, 1).
If m = 4, then take π = (4, 4) and g = (6, 2). If m ≡ 0 mod 3, then take
π = (m− 1, 3, 12) and g = (3m/3, 22).

We close this preliminary section with some remarks concerning Frobenius groups.
Recall that a Frobenius group is a product G = FH with F E G, 1 < H < G,
F ∩H = 1 and such that two elements x ∈ F and y ∈ H commute only if x = 1 or
y = 1 (i.e. H acts fixed-point freely on F by conjugation). In this setting, F is called
the kernel and H a complement of G. A classical result, Thompson’s nilpotency
criterion, implies that F is nilpotent (see for instance [7, V.8.14]). Moreover, every
subgroup of H of order the product of two (possibly equal) primes is cyclic and ev-
ery Sylow subgroup of H is either cyclic or a generalized quaternion group. Finally,
by a theorem of Zassenhaus, either H is solvable or H has a unique nonsolvable
composition factor, which is isomorphic to A5 (see [6, 16.7 d)]).

In the following lemma, we gather some information on Γ(G) when G is a Frobe-
nius group.

Lemma 2.11. Let G be a Frobenius group with kernel F and complement H. The
graph Π(G) has two connected components, whose vertex sets are π(F ) and π(H).
If F ∩Van(G) 6= ∅, then we have Γ(G) = Π(G), otherwise Γ(G) coincides with the
connected component of Π(G) with vertex set π(H).

Proof. By the structure of Frobenius groups, every nonidentity element of G is
either a π(F )-element or a π(H)-element, and π(F )∩π(H) = ∅. Since F is nilpotent,
the primes in π(F ) are vertices of Π(G) which are pairwise adjacent. Also the
primes in π(H) lie in the same connected component of Π(G): in fact, [7, V.8.18 c)]
guarantees that Z(H) is not trivial. So, if q is a prime divisor of |Z(H)|, it is
easily seen that every other prime divisor of |H| is adjacent to q in Π(G). By the
character theory of Frobenius groups, we get G \ F ⊆ Van(G). Therefore, the rest
of the lemma follows from Corollary 2.6.

It may be worth mentioning that both the situations outlined for Γ(G) in the
conclusions of Lemma 2.11 can occur. An example of the latter situation is S3,
whereas an infinite family of examples of the former is provided in [1, Example 2].

3. Proof of Theorem C

Theorem C can be derived as a consequence of the following result, which may
be of independent interest.

Theorem 3.1. Let G be a group, and p a prime divisor of |G|. Assume that G
has a normal Sylow p-subgroup P . If, for every prime q 6= p, there is no vanishing
element of G of order divisible by pq, then G/Op′(G) is either a p-group, or a
Frobenius group with kernel POp′(G)/Op′(G). Moreover, Op′(G) is nilpotent.

Proof. We note that the assumptions are preserved by factoring out the normal
subgroup Op′(G). Thus, we shall first assume Op′(G) = 1 and prove that, if
G > P , then G is a Frobenius group with kernel P .

By the Schur-Zassenhaus theorem, there exists a complement H > 1 for P in G,
and this H acts faithfully (by conjugation) on P because Op′(G) = 1. Set F to be
the Fitting subgroup of H. We will go through a few steps.
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(i) If A is an abelian normal subgroup of H, then AP \ P ⊆ Van(G).
In fact, AP E G and then CAP (P ) ≤ P because by assumption Op′(G) is trivial.

Hence, by Lemma 2.4, we get AP \ P ⊆ Van(G).

(ii) QP \ P ⊆ Van(G), for every Sylow subgroup Q of F .
Let q be a prime, and Q a Sylow q-subgroup of F . Also, let A be a characteristic

abelian subgroup of Q. Now, step (i) yields AP \ P ⊆ Van(G). As pq does not
divide the order of any vanishing element of G, the prime p does not divide o(g)
for every g ∈ AP \P . Hence A acts fixed-point freely on P and, since A is abelian,
we get that A is cyclic.

The paragraph above shows that every characteristic abelian subgroup of Q is
cyclic. Recalling [14, Theorem 1.2], we can write Q = ET , with E∩T = Z ≤ Z(Q),
|Z| = q, and [E, T ] = 1. The group E is extraspecial or E = Z. There exists a
cyclic subgroup U ≤ T with |T : U | ≤ 2 and U = CT (U). Further, U and EU are
characteristic subgroups of Q.

In the case when E 6= Z, we have (EU)′ = Z and U = Z(EU), whence, by [6,
Theorem 7.5], every nonlinear irreducible character of EU vanishes on EU \U . As
Z ≤ U , clearly the same conclusion vacuously holds if E = Z.

Thus, by Lemma 2.1 and Lemma 2.2, we have EUP \UP ⊆ Van(G). Moreover,
step (i) yields UP \ P ⊆ Van(G). Therefore, EUP \ P ⊆ Van(G).

If q 6= 2 we get Q = EU , therefore QP = EUP , and (ii) is proved. So, we can
assume q = 2.

Recalling that no vanishing element of G has order divisible by pq, it follows
that CEU (x) = 1 for every nontrivial x ∈ P . Hence EUP is a Frobenius group
with kernel P . This implies that EU is either cyclic or generalized quaternion.
Assume first that EU is generalized quaternion. Since EU/Z is abelian, and since
the index of the derived subgroup of a generalized quaternion group is 4, it follows
that EU = E ' Q8, and U = Z. In particular, T = CT (Z) = CT (U) = U . Hence,
also in this case we get Q = EU , and (ii) is proved.

Finally, if EU is cyclic, then EU = U and Q = T . Now, U is an abelian normal
subgroup of index at most 2 in Q, so if ψ is a nonlinear irreducible character of Q,
then ψ vanishes on Q \ U (see for instance [9, Lemma 2.29]). Thus, by Lemma 2.2
and Lemma 2.1, it follows that QP \ UP ⊆ Van(G). Hence, as UP \ P ⊆ Van(G),
we get that QP \ P ⊆ Van(G) and (ii) is proved.

(iii) FP \ P ⊆ Van(G).
Let Q be a Sylow q-subgroup of F . Since no vanishing element of G has order

divisible by pq, step (ii) yields CQ(x) = 1, for every nontrivial x ∈ P . Thus, Q acts
fixed-point freely on P . It follows that Q is either cyclic or generalized quaternion.

Therefore, F = C × D with C cyclic of odd order and D either cyclic or gen-
eralized quaternion. Define a subgroup U of F as follows: U = F if D is cyclic,
U = Z(F ) if D ' Q8, and U is the characteristic subgroup of index 2 in F if
D ' Q2k , for k ≥ 4.

Hence, U is a cyclic characteristic subgroup of F . So, U E H and hence UP \P ⊆
Van(G) by step (i). Moreover, if U 6= F , then every nonlinear irreducible character
of F vanishes on F \ U . Namely, if D ' Q2k with k ≥ 4, then this follows from [9,
Lemma 2.29]. Also, if D ' Q8, then this follows by direct inspection. Thus,
Lemma 2.2 yields F \ U ⊆ Van(H) and then FP \ UP ⊆ Van(G) by Lemma 2.1.
Therefore, FP \ P ⊆ Van(G).
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In the sequel, let 1 = M0 ≤ M1 ≤ · · · ≤ Mn = F be an H-chief series of F and
write Vi = Mi/Mi−1 for i = 1, . . . , n. Define

L =

n⋂
i=1

CH(Vi),

the centralizer in H of all the chief factors Vi. Observe that F ≤ L E H.

(iv) G \ LP ⊆ Van(G).
Recall that F = C × D, with C cyclic of odd order and D either cyclic or

generalized quaternion. If D is cyclic, then F has a characteristic series whose
factors are cyclic of prime order. Indeed, the same conclusion holds also if D 6' Q8,
as in this case F has a unique cyclic subgroup of index 2. If D ' Q8, then F
has a characteristic series whose factors are cyclic of prime order or isomorphic to
C2 × C2. Therefore, in any case, every H-chief factor of F is cyclic or isomorphic
to C2 × C2. Let now V be any of these factors and let A = H/CH(V ). We claim
that H \CH(V ) ⊆ Van(H).

If V is cyclic, then A is abelian, and an application of Lemma 2.3 yields that
H \CH(V ) ⊆ Van(H).

If V ' C2×C2, then A is isomorphic to a subgroup of S3. If A has order less than
6, then we can argue as in the paragraph above, getting H \CH(V ) ⊆ Van(H). In
the case when A is isomorphic to S3, the group A has an abelian normal subgroup
U/CH(V ) of index 2. By Lemma 2.3, we have U \CH(V ) ⊆ Van(H). Moreover,
the unique nonlinear irreducible character of A vanishes on every element outside
U/CH(V ), whence such elements are in Van(A) and, by Lemma 2.1, we see that
H \ U ⊆ Van(H). Therefore, also in this case H \CH(V ) ⊆ Van(H).

Now, if x ∈ H \ L, then x does not centralize some chief factor Vi and, by the
previous paragraphs, we conclude that x ∈ Van(H). So, H \ L ⊆ Van(H), and by
Lemma 2.1, we also have that G \ LP ⊆ Van(G).

(v) LP \ FP ⊆ Van(G).
We first observe that if N/F is a normal subgroup of H/F , q is an odd prime

dividing |N/F | and there exists a character ψ ∈ Irr(N/F ) of q-defect zero, then
every Sylow q-subgroup Q of N is cyclic. In fact, ψ vanishes on every element
of N/F having order divisible by q. So, by Lemma 2.1 and Lemma 2.2, QF \
F ⊆ Van(H), and again by Lemma 2.1 QFP \ FP ⊆ Van(G). Since step (iii)
yields FP \ P ⊆ Van(G), it follows that QFP \ P ⊆ Van(G) and, in particular,
QP \ P ⊆ Van(G). As no vanishing element of G has order divisible by pq, this
implies that Q acts fixed-point freely on P . Since q is odd, Q must be cyclic.

If L = F , then (v) clearly holds. So, we may assume that L > F . Let M/F be
a minimal normal subgroup of H/F contained in L/F . We first prove that M/F
is nonabelian. If this is not the case, then M/F is a t-group for some prime t.
Write R = Ot′(F ) E H and let T be a Sylow t-subgroup of M . By the definition
of L, we see that T acts trivially on the terms of an H-chief series of F . Thus, T
acts trivially on the terms of an H-chief series of R and hence, by coprimality, T
centralizes R. This yields T ≤ Ot(M) ≤ Ot(H) ≤ F , contradicting M > F .

Therefore, M/F is the direct product of m copies of a nonabelian simple group
S, for a suitable positive integer m. Let now q be a prime divisor of |S|, with
q 6= 2, 3 (such a q does certainly exist, by Burnside’s theorem). By Theorem 2.8,
S has an irreducible character of q-defect zero and then M/F has an irreducible
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character of q-defect zero too. Hence, M has cyclic Sylow q-subgroups and this
clearly yields m = 1, i.e. M/F is a simple group.

We now prove the following

Claim: M/F has irreducible characters of q-defect zero for every q ∈ π(M/F ).
Observe that, as can be checked in [2], the groups M12, M22, M24, J2, HS,

Ru, Co1, BM , A8 and A9 all have irreducible characters of 3-defect zero and
noncyclic Sylow 3-subgroups. Similarly, Suz, Co3 and An for every n ≥ 10 all
have irreducible characters of 5-defect zero (by Theorem 2.8) and noncyclic Sylow
5-subgroups. Hence, M/F is not isomorphic to any of the groups listed above.
Taking into account Theorem 2.8, it only remains to exclude the possibility that
M/F is isomorphic to A7.

Looking for a contradiction, assume M/F ' A7, and define D to be the smallest
term of the derived series of M . Then D = D′ (i.e. D is perfect) and M/D is
solvable. Since M/F is perfect, it follows that M = FD. In fact, FD E M and
M/FD is a quotient of the perfect group M/F and of the solvable group M/D, so
M/FD = 1. Let Z = F ∩D. Then D/Z 'M/F ' A7.

We now show that D centralizes F . Let Mj be the largest term in the H-chief
series 1 = M0 ≤ M1 ≤ · · · ≤ Mn = F centralized by D. Assume, working for
a contradiction, that j < n and let N = Mj+1. Since D ≤ L, we have that
[N,D] ≤ Mj . So [N,D,D] = [D,N,D] = 1. Hence the Three Subgroup Lemma
yields [D,D,N ] = 1, i.e. [D′, N ] = [D,N ] = 1. Therefore D centralizes N , against
the choice of Mj . It follows that Mj = F .

Hence, we see that Z = D ∩ F ≤ Z(D). Also, clearly Z ≤ D′ because D is
perfect. Thus, it follows that D is a factor group of the Schur covering group 6.A7

of A7.
Let T be the normalizer in D of a subgroup of order 7. Clearly |T | = 21|Z|.

Checking in [2] the columns of the lifting orders corresponding to the conjugacy
classes of the elements of order 3 in every factor group of 6.A7, we see that T
contains a noncyclic subgroup of order 21. We also see that there exists a character
ψ ∈ Irr(D) of degree 21 vanishing on T y \ Z for every y ∈ H. So, Lemma 2.1 and
Lemma 2.2 yield that TP \ ZP ⊆ Van(G). By step (i), we also have ZP \ P ⊆
Van(G). Therefore TP \ P ⊆ Van(G). Since no vanishing element in G has order
divisible by pq, for every q 6= p, we see that T acts fixed-point freely on P . It follows
that TP is a Frobenius group. But T , as a Frobenius complement of order 21|Z|,
must have cyclic subgroups of order 3 · 7, a contradiction. This shows that M/F is
not isomorphic to A7 and concludes the proof of the claim.

As a consequence of the Claim, recalling Lemma 2.7 and Lemma 2.1, we get that
M \ F ⊆ Van(H). Hence, again by Lemma 2.1, MP \ FP ⊆ Van(G). As step (iii)
yields FP \P ⊆ Van(G), we see that MP \P ⊆ Van(G). Since G has no vanishing
element of order divisible by pq for every q 6= p, the group MP is a Frobenius group
with complement M . This implies M/F ' A5.

We have hence proved that if M/F is a minimal normal subgroup of H/F ,
with M/F ≤ L/F , then M/F ' A5. In particular, if M1/F , M2/F are distinct
minimal normal subgroups of H/F contained in L/F , then M1M2/F ' A5 × A5

has characters of 5-defect zero. This implies (by the first paragraph in the proof of
(v)) that the Sylow 5-subgroups of M1M2 are cyclic, a contradiction.

Therefore, the socle of L/F is simple, isomorphic to A5. So L/F is isomorphic
to either A5 or S5. In both cases, we see by direct inspection that every nontrivial
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element of L/F is in Van(L/F ). So, by Lemma 2.1 and Lemma 2.2, we get that
LP \ FP ⊆ Van(G).

Conclusion. By steps (iii), (iv) and (v), we have G \ P ⊆ Van(G). Hence, no
element of G \ P has order divisible by p and we get CG(x) ≤ P , for every x ∈ P
with x 6= 1. Therefore, G is a Frobenius group with kernel P and complement H.

To conclude the proof, we now drop the assumption that Op′(G) = 1 and show
that K = Op′(G) is nilpotent. Observe first that, as P > 1, Proposition 2.5 yields
K ∩ Van(G) = ∅. Next, note that the Fitting subgroup F(G) of G is contained
in PK, because F(G/K) = PK/K. Setting M = F(G) ∩ K, our aim is to show
that M = K. Assume this is not the case, and take a minimal normal subgroup
N/M of G/M with N ≤ K. If N/M is nonabelian then, by Corollary 2.9, we get
N/M ∩ Van(G/M) 6= ∅. Thus, by Lemma 2.1, K ∩ Van(G) 6= ∅, a contradiction.
So N/M is an abelian q-group for some prime q. Let Q be a Sylow q-subgroup of
N and let L = Oq′(N). Note that N = QL. Clearly L is centralized by Q ∩M ,
but not by Q, as otherwise Q would be contained in Oq(N) ≤ F(G) and hence
N ≤ M , against the choice of N . Thus, by coprimality, there exists a G-chief
factor V = A/B, where A,B ≤ L, which is not centralized by Q. It follows that
CN (V ) < N . Recalling that the nilpotency of M yields M ≤ CN (V ), we are in a
position to apply Lemma 2.3, obtaining N \CN (V ) ⊆ Van(G). This leads to the
final contradiction K ∩Van(G) 6= ∅.

Theorem C, which we state again, follows immediately from Theorem 3.1.

Theorem C. Let G be a group, p a prime divisor of |G|, and P a Sylow p-subgroup
of G. If G does not have any vanishing element of order divisible by p, then the
following conclusions hold:

(a) P is normal in G;
(b) eitherG is abelian, orG/Op′(G) is a Frobenius group with kernel POp′(G)/Op′(G),

and Op′(G) is nilpotent.

Proof. Part (a) is [3, Corollary 3]. In order to prove Part (b), we apply Theorem 3.1.
If G/Op′(G) is a p-group, then by (a) we have that G is nilpotent. By Corollary 2.6
and Burnside’s theorem on zeros of nonlinear irreducible characters, it follows that
G is abelian.

It is worth mentioning that there actually exist groups G and primes p satisfying
the assumptions of Theorem C and such that Op′(G) is nonabelian. For instance,
take a Hall {2, 7}-subgroup of the Suzuki group Suz(8) and a cyclic group P of
order 29. Consider the nontrivial action of H on P and the corresponding semidirect
product G. One can check that G has no vanishing elements of order divisible by
29 (in fact Van(G) consists just of elements of order 7), and O29′(G) is nonabelian.

4. Some applications of Theorem 3.1

Our aim in this section is to derive some consequences of Theorem 3.1 (and of
its corollary Theorem C). We shall use them in the proof of Theorem B.

Proposition 4.1. Assume that, for a given prime p, the group G has a normal
Sylow p-subgroup P and that p is an isolated vertex of Γ(G). Then Γ(G) has at most
two connected components and, if G is nonsolvable, then G has a unique nonabelian
composition factor S and S ' A5.
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Proof. The vertex p is isolated in Γ(G) exactly when Van(G) contains elements
of order divisible by p, but no element of order divisible by pq for every prime
q 6= p. We can hence apply Theorem 3.1. Note also that, as P ∩ Van(G) 6= ∅,
Proposition 2.5 implies that Op′(G) = 1. So, either G = P and Γ(G) consists of
the single vertex p, or G is a Frobenius group and we are done by Lemma 2.11.

Note that, as the group A7 shows (choosing any prime divisor of |A7| as the prime
p), the assumption concerning the normality of a Sylow p-subgroup is essential in
the above statement.

Proposition 4.2. Let G be a group, and let σ be the vertex set of Γ(G). Assume
σ 6= π(G). Then Γ(G) is connected. Moreover, if G is nonsolvable, then G has a
unique nonabelian composition factor S and S ' A5.

Proof. Set ρ = π(G) \ σ. Our assumption guarantees that ρ 6= ∅, and Part (a)
of Theorem C applied to each prime in ρ yields that G has a nilpotent normal
Hall ρ-subgroup. In particular, for a given p in ρ, the group G = G/Op′(G) is a

(σ ∪{p})-group. Also, by Part (b) of Theorem C, Op′(G) is nilpotent and either G
is a Frobenius group or G is abelian. If G is abelian, then Γ(G) is the empty graph
and the result clearly holds. Therefore we may assume that G is a Frobenius group.
If G is nonsolvable, then G is nonsolvable and hence G has a unique nonabelian
composition factor, which is isomorphic to A5.

It remains to prove that Γ(G) is connected. Let H be a Frobenius complement of
G. Then, by Lemma 2.11, all the primes in π(H) are vertices in the same connected
component of Γ(G). Hence, it suffices to show that every prime q ∈ σ \ π(H) is
adjacent to a prime in π(H). The prime q is a vertex of Γ(G), thus there exists
g ∈ Van(G) of order divisible by q. As p ∈ ρ, the prime p does not divide o(g).
If there is no prime r ∈ π(H) dividing o(g), then (|G : Op′(G)|, o(g)) = 1 and
g ∈ Op′(G). Let now P be a Sylow p-subgroup of G. We know that P is normal in
G, and clearly Op′(G)∩P = 1. Since g lies in Op′(G)∩Van(G), by Proposition 2.5
we get gx ∈ Van(G) for every x ∈ P . Choosing x 6= 1, we get a vanishing element
of order divisible by p, a contradiction. Therefore o(g) is divisible by some prime
r ∈ π(H), which shows that q is adjacent to r in Γ(G), as desired.

5. Proof of Theorem A and Theorem B

In what follows, we shall denote by V (G) the vertex set of a graph G, and by
n(G) the number of connected components of G.

As a last preliminary result, we gather some information on Γ(G) when G is an
extension of a p-group by A7.

Lemma 5.1. Let G be a group, and N a nontrivial normal subgroup of G. If N
is a p-group and G/N ' A7, then V (Γ(G)) = π(G) and Γ(G) has at most two
connected components.

Proof. Recalling Lemma 2.1(a), by factoring out a suitable normal subgroup of G
we can assume that N is minimal normal in G.

The graph Γ(A7) has four vertices (namely 2, 3, 5 and 7), whence it will be
enough to show that there are three distinct primes q1, q2, q3 ∈ {2, 3, 5, 7} that are
connected to p in Γ(G). In order to prove that a prime q 6= p is adjacent to p in
Γ(G), we shall argue that there exists a p′-element x = gN ∈ Van(G/N) of order
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divisible by q and such that CN (x) 6= 1. Then, taking a nontrivial y ∈ CN (x), the
element gy has order divisible by pq and gy ∈ gN ⊆ Van(G) by Lemma 2.1.

Since the dimension of the eigenspace of the eigenvalue 1 is invariant by field
extensions, considering also that the dimensions of eigenspaces add up in a direct
sum of modules, we can reduce to the case that N is an absolutely irreducible
A7-module. So, we refer to the character tables of A7 in [12].

If p 6= 2, 3, 5, 7, then for every φ ∈ IBrp(A7) = Irr(A7) we have 〈φ, 1〈x〉〉 6= 0, for
x = (1, 2, 3)(4, 5, 6), x = (1, 2, 3, 4, 5) and x = (1, 2)(3, 4, 5, 6).

If p = 3, then 〈φ, 1〈x〉〉 6= 0 for every φ ∈ IBrp(A7) when x = (1, 2, 3, 4, 5) and
x = (1, 2)(3, 4, 5, 6).

If p = 5, then 〈φ, 1〈x〉〉 6= 0, for every φ ∈ IBrp(A7) when x = (1, 2, 3)(4, 5, 6) or
x = (1, 2)(3, 4, 5, 6).

If p = 7, then 〈φ, 1〈x〉〉 6= 0, for every φ ∈ IBrp(A7) when x = (1, 2, 3)(4, 5, 6),
x = (1, 2)(3, 4, 5, 6) or even x = (1, 2, 3, 4, 5).

If p = 2, then 〈φ, 1〈x〉〉 6= 0, when φ(1) 6= 6 and x = (1, 2, 3)(4, 5, 6) or x =
(1, 2, 3, 4, 5, 6, 7) or when φ(1) = 6 and x = (1, 2, 3)(4, 5, 6) or x = (1, 2, 3, 4, 5).

For the sake of completeness, it may be worth mentioning that there are groups
satisfying the assumptions of the above lemma, and whose vanishing prime graph is
disconnected. An example of this kind can be constructed as follows. Let H be an
irreducible subgroup of GL(6, 2) isomorphic to A7, and let V be the natural module
for GL(6, 2). Set G to be the semidirect product VoH formed according to the
natural action. It is possible to check that Γ(G) has two connected components:
the prime 7 is an isolated vertex, whereas 2, 3 and 5 are pairwise adjacent.

We are now in a position to prove Theorem B, which we state again.

Theorem B. Let G be a nonsolvable group. If Γ(G) is disconnected, then G has
a unique nonabelian composition factor S, and n(Γ(G)) ≤ n(Π(S)) unless G is
isomorphic to A7.

Proof. As Γ(G) is disconnected, Proposition 4.2 yields that V = V (Γ(G)) coincides
with π(G). We argue by induction on the order of the group. Recall that, if N is
a normal subgroup of G, then Γ(G/N) is a subgraph of Γ(G).

Assume first that G has nontrivial solvable normal subgroups. So N = Op(G) 6=
1 for some prime p. In view of Lemma 5.1 we are done if G/N ' A7. So, we may
assume this is not the case.

Suppose V (Γ(G/N)) = π(G/N). If Γ(G/N) is connected, then N must be a Sy-
low p-subgroup of G and p an isolated vertex of Γ(G), as Γ(G) is disconnected. But
then by Proposition 4.1 we see that G has just one nonabelian composition factor
S and that n(Γ(G)) ≤ 2 < 3 = n(Π(S)), as S ' A5. If Γ(G/N) is disconnected,
then induction yields that G/N , and hence G, has a unique nonabelian composition
factor S and that n(Γ(G/N)) ≤ n(Π(S)). Now, n(Γ(G/N)) = n(Γ(G)) unless N is
a Sylow subgroup of G and p is an isolated vertex of Γ(G). But also in this case,
again by Proposition 4.1, we get n(Γ(G/N)) = n(Γ(G)) = 2.

Suppose now V (Γ(G/N)) 6= π(G/N). By Proposition 4.2, Γ(G/N) is connected,
and G/N (whence G) has a unique nonabelian composition factor S, with S ' A5.
In particular, n(Π(S)) = 3.

Set π = π(G/N) \ V (Γ(G/N)), and observe that p cannot lie in π by Part (a)
of Theorem C. By the same result, the group G/N has a nilpotent normal Hall
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π-subgroup K/N . Denoting by H a complement for N in K, we get that H
is a Hall π-subgroup of G. Set M = CH(N). We claim that M is a normal
subgroup of G. In fact, M = CK(N)∩H is a Hall π-subgroup of CK(N), whereas
Z(N) = CK(N)∩N is a Sylow p-subgroup of CK(N). So CK(N) = M×Z(N) and
hence M = Op′(CK(N)). Therefore M , which is characteristic in CK(N) E G, is
normal in G. We shall consider the two possibilities M = H and M 6= H.

Assume M = H. Now, H and N are nilpotent normal subgroups of G, so
that K = HN is also nilpotent. If Van(G) ∩ K 6= ∅, then Corollary 2.6 yields
an element g ∈ Van(G) ∩ K whose order is divisible by every prime in π(K). In
particular, the elements in π(K) = π ∪ {p} are in the same connected component
of Γ(G). So, n(Γ(G)) ≤ n(Γ(G/N)) + 1 ≤ 2 < n(Π(S)). On the other hand,
assume Van(G) ∩ K = ∅, and let q be in π(K). Since V = π(G), there exists
g ∈ Van(G) such that o(g) is a multiple of q. As g /∈ K, we get that o(g) is divisible
by some prime in π(G/K) = V (Γ(G/N)). This proves that every element in π(K)
is adjacent to some vertex in V (Γ(G/N)), thus we get n(Γ(G)) = n(Γ(G/N)) = 1.

Now, we may assume M 6= H. Let Z/MN = Z(K/MN) E G/MN . We have
that (Z/M)/(MN/M) ' Z/MN is abelian. We claim that CZ/M (MN/M) ≤
MN/M . Write C/M = CZ/M (MN/M). Since [C/M,MN/M ] = 1, we get
[C,MN ] ≤M . Therefore, [C,N ] ≤M ∩N = 1. Hence C ≤ CK(N) ≤MN , as we
wanted. Note also that, K/N being a p′-group, we get (|Z/MN |, |MN/M |) = 1.

By Lemma 2.4 and Lemma 2.1, we have that Z \MN ⊆ Van(G). Recalling now
that K/N is nilpotent, and that Z/MN is the center of the nontrivial nilpotent
group K/MN , on one hand we get π(Z/MN) = π(K/MN), whence π(Z/N) =
π(K/N); on the other hand, since Z/N is nilpotent, there exists zN ∈ (Z/N) \
(MN/N) such that o(zN) is divisible by every prime in π(Z/N). Therefore z ∈
Z\MN ⊆ Van(G) has order divisible by every prime in π = π(K/N), which implies
that all such primes lie in the same connected component of Γ(G). Our discussion
so far yields that each connected component of Γ(G) is a union of some of the
following three sets: {p}, π, and V (Γ(G/N)). Hence, n(Γ(G)) ≤ 3 = n(Π(S)).

Therefore, for the rest of the proof we shall assume that G has no solvable normal
subgroup.

Let M be a minimal normal subgroup of G.

Claim. every p ∈ V is connected in Γ(G) to some q ∈ π(M).

This is trivially true if p ∈ π(M), so we can assume that p does not divide |M |. If
p ∈ V (Γ(G/M)), then there exists an element xM ∈ Van(G/M) such that p divides
the order of x. As M in nonsolvable, the main result of [15] implies that there exists
a nontrivial y ∈ CM (x). But then xy ∈ xM ⊆ Van(G), and hence p is connected
to every prime divisor of o(y) in Γ(G). Finally, if p ∈ π(G/M) \ V (Γ(G/M)),
then Theorem C implies that G/M has a normal Sylow p-subgroup P/M , whence
there exists a subgroup Z E G such that |Z/M | = p. Let 〈x〉 be a complement
for M in Z. Observe that CZ(M) ≤ M , as otherwise x ∈ Op(Z) ≤ Op(G) = 1,
a contradiction. Thus, Z \ N ⊆ Van(G) by Lemma 2.4. On the other hand, by
Thompson’s nilpotency criterion there must exist a nontrivial y ∈ CM (x). Now,
xy ∈ Van(G) and hence p is connected to every prime divisor of o(y) in Γ(G). The
claim is proved.

We now show that M is a simple group. If this is not the case then, by Corol-
lary 2.9, every q ∈ π(M), q ≥ 5, is adjacent to every other q′ ∈ π(M) in Γ(G).
Recalling that π(M) ⊆ V , then all primes in π(M) lie in the same connected
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component of Γ(G) and, by the Claim, this implies that Γ(G) is connected, a con-
tradiction.

Moreover, CG(M) = 1. If not, then there exists a minimal normal subgroup N
of G such that N ∩M = 1. Since N is nonsolvable as well, by Corollary 2.9 we
know that there exists a g ∈ N ∩Van(G). Now, by Proposition 2.5 all products gm,
with m ∈M , are vanishing elements of G. Hence every prime in π(M) is connected
to every single prime divisor of g in Γ(G). By the Claim, this again implies that
Γ(G) is connected, against our assumption.

Therefore, M is the socle of G and, as M is simple, G is an almost simple
group. In particular, G/M is solvable (by Schreier’s conjecture) and M is the only
nonabelian composition factor of G.

Set σ = π(M). By Corollary 2.9, if p, q ∈ σ are adjacent in Π(M) then they are
adjacent in Γ(G) as well, unless {p, q} = {2, 3}. Therefore, recalling that σ ⊆ V ,
the subgraph induced by Γ(G) on σ is either Π(M) or Π(M) with the edge {2, 3}
deleted. Taking also into account Lemma 2.7 and Theorem 2.8, the latter situation
can occur only if M belongs to a list consisting of some sporadic and alternating
groups. However, Proposition 2.10 yields that, unless M ' A7, there exist g ∈ M
and χ ∈ Irr(Aut(M)) such that o(g) = 6, the restriction of χ to S is irreducible, and
χ(g) = 0. As a consequence, the subgraph induced by Γ(G) on σ actually coincides
with Π(M) unless M ' A7. In view of the Claim, we now get n(Γ(G)) ≤ n(Π(M))
if M 6' A7. On the other hand, assume M ' A7: since we are excluding the
possibility G ' A7, we only have to check the case G ' S7, and direct inspection
shows that n(Γ(S7)) = 2 < 3 = n(Π(A7)). This concludes the proof.

Finally we are ready to prove Theorem A, which we state again.

Theorem A. Let G be a group. Then Γ(G) has at most six connected components.

Proof. If G is solvable, then n(Γ(G)) ≤ 2 by Theorem A of [4]. If G is nonsolvable,
we use Theorem B and the fact that, as shown in [8] and [16], n(Π(S)) is at most
6 when S is a nonabelian simple group.

6. Γ(G) and Π(G): similarities and differences

The purpose of this final section is to discuss some aspects of the relationship
between the graphs Π(G) and Γ(G). As we shall see, Theorem A and Theorem B
hold also replacing Γ(G) with Π(G) (see Theorem 6.3 and Theorem 6.2 respectively;
the latter actually differs from Theorem B on the fact that A7 doesn’t need to be
excluded). Moreover, Proposition 6.4 states that the two graphs are actually the
same when G is a nonabelian simple group other than A7.

Nevertheless, Example 6.5 shows that the two graphs are in general not so similar,
in the sense that the edge set of Γ(G) can be “much smaller” than that of Π(G),
even if the vertex sets are the same. Therefore, the fact that the bound for the
number of connected components is the same for the two graphs appears to be not
obvious in principle.

Theorem 6.2 can be deduced from Theorem A and Lemma 1–Lemma 3 in [16].
Here, we present a short proof. We first prove an auxiliary result.

Lemma 6.1. Let N be a nonnilpotent normal subgroup of the group G. Then the
following conclusions hold.

(a) n(Π(G)) ≤ n(Π(N)).
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(b) If CG(N) 6= 1, then Π(G) is connected.

Proof. Let p ∈ π(G) \ π(N) and let x ∈ G be an element of order p. Since N is
not nilpotent, by Thompson’s nilpotency criterion there exists a nontrivial element
y ∈ CN (x). So, the vertex p of Π(G) is connected to all prime divisors of o(y).
This yields (a).

Assume now CG(N) 6= 1 and choose q ∈ π(CG(N)). Then every prime divisor
of |N | is connected to q in Π(G). As by the previous paragraph every prime in
π(G) is connected to a prime in π(N), it follows that Π(G) is connected.

Theorem 6.2. Let G be a nonsolvable group. If Π(G) is disconnected, then G has
a unique nonabelian composition factor S and n(Π(G)) ≤ n(Π(S)).

Proof. Let N be a minimal normal subgroup of G.
Assume first that N is solvable, hence N is an elementary abelian p-group for a

suitable prime p. For this case, we argue by induction on the order of the group.
If p is not connected to any q ∈ π(G/N), then N is a Sylow p-subgroup of G and
p does not divide o(g) for all g ∈ G \N . In this situation, G is a Frobenius group
(with kernel N), and hence n(Π(G)) = 2 by Lemma 2.11. Moreover, we get S ' A5,
whence n(Π(G)) = 2 < 3 = n(Π(S)). Therefore we can assume that p is connected
in Π(G) to some vertex of Π(G/N). As Π(G/N) is a subgraph of Π(G) and Π(G) is
disconnected, then Π(G/N) is disconnected as well, and we are done by induction.

Next, assume that N is nonsolvable. As Π(N) is clearly connected when N is
not simple, Lemma 6.1 implies that N is simple and that CG(N) = 1. Hence G is
an almost simple group, with socle N . Since now G/N is isomorphic to a subgroup
of the solvable group Out(N) (here we use Schreier’s conjecture), we see that N
is the unique nonabelian composition factor of G. Finally, n(Π(G)) ≤ n(Π(N)) by
(a) of Lemma 6.1.

We can now state the following result (see [16]).

Theorem 6.3. Let G be a group. Then Π(G) has at most six connected compo-
nents.

Proof. If G is solvable, then n(Π(G)) ≤ 2 (see [16, pag. 487]). If G is nonsolvable
and Π(G) is disconnected, we use Theorem 6.2 and the fact, proved in [8] and [16],
that n(Π(S)) ≤ 6 for every finite simple group S.

Let S be a nonabelian simple group. Note that, by Part (a) of Theorem C,
the graphs Γ(S) and Π(S) have the same vertex set. Also, taking into account
Lemma 2.7, Theorem 2.8 and Proposition 2.10, the following proposition can be
easily deduced.

Proposition 6.4. Let S be a nonabelian simple group. Then Γ(S) = Π(S), unless
S ' A7.

As already mentioned, the above result cannot be extended to include A7. In
fact, {2, 3} is an edge of Π(A7), but not of Γ(A7). Although, as we shall see in
Example 6.5, there is a whole family of groups G whose graphs Γ(G) and Π(G)
have the same vertex set but fairly different edge sets, at the time of this writing
the authors do not know of any example of a nonsolvable group G 6' A7 such that
V (Γ(G)) = V (Π(G)) and n(Γ(G)) 6= n(Π(G)).
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In contrast to what happens in the graph Π(G), it was proved in [4, Theorem B]
that the independence number (i.e. the maximal size of a set of pairwise nonadja-
cent vertices) of Γ(G) can be arbitrarily large if G is a solvable group. In particular,
the edge set of Γ(G) can be considerably smaller than the edge set of Π(G) in the
context of solvable groups. We give here a nonsolvable example.

Example 6.5. Let k ≥ 2 be a natural number. Let p1, . . . , pk be distinct primes
with pi ≥ 7. Set n =

∏
i pi. Using Dirichlet’s theorem on primes in arithmetic

progression, pick q1, . . . , qk distinct primes such that qj ≡ 1 mod pi for every j 6= i,
qj ≡ 1 mod 5 and qj > 120 · n for every j. Set m =

∏
i qi.

Let Vj be the additive group of the finite field GF(q2j ) and V = V1 × · · · × Vk.
Set H = Cn × SL(2, 5), where Cn is a cyclic group of order n. Denote by Cpi
the subgroup of order pi of Cn. Next, we define a group action of H on V . For
each i, let λi be an element of order n/pi of the multiplicative group of GF(q2i )
and note that the right multiplication by λi in Vi defines an automorphism of
order n/pi. Therefore, this yields an action of Cn on Vi with kernel Cpi . Also, by
construction, Cn/Cpi acts fixed-point freely on Vi. Since q2i ≡ 1 mod 5, the group
Aut(Vi) = GL(2, qi) contains a subgroup isomorphic to SL(2, 5) acting fixed-point
freely on Vi (see [7, V.8.8 b)]). As it commutes with the scalar action defined by
Cn, this defines an action of H on Vi, for each i, and so an action of H on V .

Set G = V oH. Clearly, the vertex set of Π(G) is {2, 3, 5, pi, qi | i = 1, . . . , k}.
Also, since SL(2, 5) acts fixed-point freely on V and Cn/Cpi acts fixed-point freely
on Vi, the edge set of Π(G) is

{{pi, pj}, {qi, qj}, {2, pi}, {3, pi}, {5, pi}, {2, 3}, {2, 5}, {pi, qi} | 1 ≤ i 6= j ≤ k}.

We claim that Γ(G) is the subgraph of Π(G) obtained by deleting the edges
{qi, qj}, 1 ≤ i 6= j ≤ k. This will show that {q1, . . . , qk} is an independent set
in Γ(G) and that the number of edges of Γ(G) is considerably smaller than the
number of edges of Π(G). We start by noticing that Van(G) ∩ V = ∅. We argue
by contradiction. Let χ be in Irr(G), and g ∈ V such that χ(g) = 0. Now,
χV = λ1 + · · · + λs, where λi is an irreducible character of V and s divides 120n.
In particular, since χ(g) = 0, we get a vanishing sum of s m-th roots of unity.
Therefore, by the Main Theorem in [13], s must be a linear combination with
nonnegative integer coefficients of q1, . . . , qk. Clearly, this contradicts the fact that
we chose qi > 120n for every i ∈ {1, . . . , k}. Next, we observe that no element of
G \V has order divisible by more than one prime qi. Since Van(G)∩V = ∅, we see
that {qi, qj} is not an edge of Γ(G), for every i 6= j.

Recalling that every noncentral element of SL(2, 5) is a vanishing element and
that Γ(H) is a subgraph of Γ(G), by Proposition 2.5 we get that

{pi, pj}, {2, pi}, {3, pi}, {5, pi}, {2, 3}, {2, 5}

are edges of Γ(G).
Consider, finally, the normal subgroup N = V oCn of G. Then (|V |, |N/V |) = 1,

N/V is abelian and CN (V ) = V . Hence, Lemma 2.4 yields that N \ V ⊆ Van(G).
It follows that {pi, qi} is an edge of Γ(G), for every 1 ≤ i ≤ k.
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