246 research outputs found

    Genomic Insights of Enterococcus faecium UC7251, a Multi-Drug Resistant Strain From Ready-to-Eat Food, Highlight the Risk of Antimicrobial Resistance in the Food Chain

    Get PDF
    The presence of multi-drug resistant (MDR) bacteria in ready-to-eat foods comprises a threat for public health due to their ability to acquire and transfer antibiotic-resistant determinants that could settle in the microbiome of the human digestive tract. In this study, Enterococcus faecium UC7251 isolated from a fermented dry sausage was characterized phenotypically and genotypically to hold resistance to multiple antibiotics including aminoglycosides, macrolides, beta-lactams, and tetracyclines. We further investigated this strain following a hybrid sequencing and assembly approach (short and long reads) and determined the presence of various mobile genetic elements (MGEs) responsible of horizontal gene transfer (HGT). On the chromosome of UC7251, we found one integrative and conjugative element (ICE) and a conjugative transposon Tn916-carrying tetracycline resistance. UC7251 carries two plasmids: one small plasmid harboring a rolling circle replication and one MDR megaplasmid. The latter was identified as mobilizable and containing a putative integrative and conjugative element-like region, prophage sequences, insertion sequences, heavy-metal resistance genes, and several antimicrobial resistance (AMR) genes, confirming the phenotypic resistance characteristics. The transmissibility potential of AMR markers was observed through mating experiments, where Tn916-carried tetracycline resistance was transferred at intra- and inter-species levels. This work highlights the significance of constant monitoring of products of animal origin, especially RTE foodstuffs, to stimulate the development of novel strategies in the race for constraining the spread of antibiotic resistance

    Antimicrobial activity and bioactive compounds of portuguese wild edible mushrooms methanolic extracts

    Get PDF
    The antimicrobial properties of phenolic extracts of Portuguese wild edible mushroom species (Lactarius deliciosus, Sarcodon imbricatus and Tricholoma portentosum) against pathogens were investigated. The minimal inhibitory concentrations (MICs) were evaluated for the entire mushroom, the cap and the stipe, separately; the portion of the mushroom used proved to be influenced in the results obtained, which are directly correlated with the content of total phenols and flavonoids in the extracts. The growth of Grampositive bacteria (Bacillus cereus, B. subtilis,) was well inhibited by these mushrooms, while Escherichia coli (Gramnegative bacteria) was resistant. The study on the antifungal effect of these mushrooms revealed that Candida albicans and Cryptococcus neoformans were differently inhibited for the mushrooms used

    The Influence of L-Carnitine on Oxidative Modification of LDL In Vitro

    Get PDF
    Owing to their structure and function, low-density lipoproteins (LDLs) are particularly susceptible to the oxidative modifications. To prevent against oxidative modification of LDL, L-carnitine, with endogenous small water-soluble quaternary amine possessing antioxidative properties, was used. The aim of this paper was to prove the in vitro influence of L-carnitine on the degree of oxidative modification of the lipid part (estimated by conjugated dienes, lipid hydroperoxides, and malondialdehyde levels) and the protein part (estimated by dityrosine and tryptophan levels) of LDL native and oxidized by cooper ions. The level of lipophylic LDL antioxidant—α-tocopherol was also measured

    Antioxidant, Anti-inflammatory and Cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phaleria macrocarpa </it>(Scheff.) Boerl (Thymelaceae) originates from Papua Island, Indonesia and grows in tropical areas. The different parts of the fruit of <it>P. macrocarpa </it>were evaluated for antioxidant, anti-inflammatory, and cytotoxic activities.</p> <p>Methods</p> <p><it>Phaleria macrocarpa </it>fruit were divided into pericarp, mesocarp and seed. All parts of the fruit were reflux extracted with methanol. The antioxidant activity of the extracts were characterized in various <it>in vitro </it>model systems such as FTC, TBA, DPPH radical, reducing power and NO radical. Anti-inflammatory assays were done by using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-γ and cytotoxic activities were determined by using several cancer cell lines and one normal cell line</p> <p>Results</p> <p>The results showed that different parts (pericarp, mesocarp, and seed) of <it>Phaleria macrocarpa </it>fruit contain various amount of total phenolic (59.2 ± 0.04, 60.5 ± 0.17, 47.7 ± 1.04 mg gallic acid equivalent/g DW) and flavonoid compounds (161.3 ± 1.58, 131.7 ± 1.66, 35.9 ± 2.47 mg rutin equivalent/g DW). Pericarp and mesocarp showed high antioxidant activities by using DPPH (71.97%, 62.41%), ferric reducing antioxidant power (92.35%, 78.78%) and NO scavenging activity (65.68%, 53.45%). Ferric thiocyanate and thiobarbituric acid tests showed appreciable antioxidant activity in the percentage hydroperoxides inhibitory activity from pericarp and mesocarp in the last day of the assay. Similarly, the pericarp and mesocarp inhibited inducible nitric oxide synthesis with values of 63.4 ± 1.4% and 69.5 ± 1.4% in macrophage RAW 264.7 cell lines induced by LPS/IFN-γ indicating their notable anti-inflammatory potential. Cytotoxic activities against HT-29, MCF-7, HeLa and Chang cell lines were observed in all parts.</p> <p>Conclusions</p> <p>These results indicated the possible application of <it>P. macrocarpa </it>fruit as a source of bioactive compounds, potent as an antioxidant, anti inflammatory and cytotoxic agents.</p

    The risk of lung cancer related to dietary intake of flavonoids

    Full text link
    It has been hypothesized that flavonoids in foods and beverages may reduce cancer risk through antioxidation, inhibition of inflammation, and other antimutagenic and antiproliferative properties. We examined associations between intake of five flavonoid subclasses (anthocyanidins, flavan-3-ols, flavones, flavonols, flavanones) and lung cancer risk in a population-based case-control study in Montreal, Canada (1,061 cases and 1,425 controls). Flavonoid intake was estimated from a food frequency questionnaire that assessed diet two years prior to diagnosis (cases) or interview (controls). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. Overall, total flavonoid intake was not associated with lung cancer risk, the effect being similar regardless of sex and smoking level. However, low flavonoid intake from food, but not from beverages, was associated with an increased risk. The adjusted ORs (95% CIs) comparing the highest versus the lowest quartiles of intake were 0.63 (0.47-0.85) for total flavonoids, 0.82 (0.61-1.11) for anthocyanidins, 0.67 (0.50-0.90) for flavan-3-ols, 0.68 (0.50-0.93) for flavones, 0.62 (0.45-0.84) for flavonols, and 0.70 (0.53-0.94) for flavanones. An inverse association with total flavone and flavanone intake was observed for squamous cell carcinoma but not adenocarcinoma. In conclusion, low flavonoid intake from food may increase lung cancer risk

    3′,4′-Dihydroxyflavonol Antioxidant Attenuates Diastolic Dysfunction and Cardiac Remodeling in Streptozotocin-Induced Diabetic m(Ren2)27 Rats

    Get PDF
    Diabetic cardiomyopathy (DCM) is an increasingly recognized cause of chronic heart failure amongst diabetic patients. Both increased reactive oxygen species (ROS) generation and impaired ROS scavenging have been implicated in the pathogenesis of hyperglycemia-induced left ventricular dysfunction, cardiac fibrosis, apoptosis and hypertrophy. We hypothesized that 3',4'-dihydroxyflavonol (DiOHF), a small highly lipid soluble synthetic flavonol, may prevent DCM by scavenging ROS, thus preventing ROS-induced cardiac damage.Six week old homozygous Ren-2 rats were randomized to receive either streptozotocin or citrate buffer, then further randomized to receive either DiOHF (1 mg/kg/day) by oral gavage or vehicle for six weeks. Cardiac function was assessed via echocardiography and left ventricular cardiac catheterization before the animals were sacrificed and hearts removed for histological and molecular analyses. Diabetic Ren-2 rats showed evidence of diastolic dysfunction with prolonged deceleration time, reduced E/A ratio, and increased slope of end-diastolic pressure volume relationship (EDPVR) in association with marked interstitial fibrosis and oxidative stress (all P<0.05 vs control Ren-2). Treatment with DiOHF prevented the development of diastolic dysfunction and was associated with reduced oxidative stress and interstitial fibrosis (all P<0.05 vs untreated diabetic Ren-2 rats). In contrast, few changes were seen in non-diabetic treated animals compared to untreated counterparts.Inhibition of ROS production and action by DiOHF improved diastolic function and reduced myocyte hypertrophy as well as collagen deposition. These findings suggest the potential clinical utility of antioxidative compounds such as flavonols in the prevention of diabetes-associated cardiac dysfunction

    Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa)

    Get PDF
    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches

    Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294]

    Get PDF
    BACKGROUND: Red wine (RW) is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW) have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. METHODS: Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC) in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A) before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B) before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB) were determined by single cell gel electrophoresis (Comet Assay) in untreated cells and after induction of oxidative stress ex vivo with H(2)O(2 )(300 μM, 20 min). RESULTS: Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H(2)O(2 )induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H(2)O(2 )induced SB. CONCLUSION: The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects
    corecore