81 research outputs found

    Numerical study of the disordered Poland-Scheraga model of DNA denaturation

    Full text link
    We numerically study the binary disordered Poland-Scheraga model of DNA denaturation, in the regime where the pure model displays a first order transition (loop exponent c=2.15>2c=2.15>2). We use a Fixman-Freire scheme for the entropy of loops and consider chain length up to N=4⋅105N=4 \cdot 10^5, with averages over 10410^4 samples. We present in parallel the results of various observables for two boundary conditions, namely bound-bound (bb) and bound-unbound (bu), because they present very different finite-size behaviors, both in the pure case and in the disordered case. Our main conclusion is that the transition remains first order in the disordered case: in the (bu) case, the disorder averaged energy and contact densities present crossings for different values of NN without rescaling. In addition, we obtain that these disorder averaged observables do not satisfy finite size scaling, as a consequence of strong sample to sample fluctuations of the pseudo-critical temperature. For a given sample, we propose a procedure to identify its pseudo-critical temperature, and show that this sample then obeys first order transition finite size scaling behavior. Finally, we obtain that the disorder averaged critical loop distribution is still governed by P(l)∼1/lcP(l) \sim 1/l^c in the regime l≪Nl \ll N, as in the pure case.Comment: 12 pages, 13 figures. Revised versio

    A stitch in time: Efficient computation of genomic DNA melting bubbles

    Get PDF
    Background: It is of biological interest to make genome-wide predictions of the locations of DNA melting bubbles using statistical mechanics models. Computationally, this poses the challenge that a generic search through all combinations of bubble starts and ends is quadratic. Results: An efficient algorithm is described, which shows that the time complexity of the task is O(NlogN) rather than quadratic. The algorithm exploits that bubble lengths may be limited, but without a prior assumption of a maximal bubble length. No approximations, such as windowing, have been introduced to reduce the time complexity. More than just finding the bubbles, the algorithm produces a stitch profile, which is a probabilistic graphical model of bubbles and helical regions. The algorithm applies a probability peak finding method based on a hierarchical analysis of the energy barriers in the Poland-Scheraga model. Conclusions: Exact and fast computation of genomic stitch profiles is thus feasible. Sequences of several megabases have been computed, only limited by computer memory. Possible applications are the genome-wide comparisons of bubbles with promotors, TSS, viral integration sites, and other melting-related regions.Comment: 16 pages, 10 figure

    A Randomized Controlled Pilot Trial of Azithromycin or Artesunate Added to Sulfadoxine-Pyrimethamine as Treatment for Malaria in Pregnant Women

    Get PDF
    New anti-malarial regimens are urgently needed in sub-Saharan Africa because of the increase in drug resistance. We investigated the safety and efficacy of azithromycin or artesunate combined with sulfadoxine-pyrimethamine used for treatment of malaria in pregnant women in Blantyre, Malawi.This was a randomized open-label clinical trial, conducted at two rural health centers in Blantyre district, Malawi. A total of 141 pregnant women with uncomplicated Plasmodium falciparum malaria were recruited and randomly allocated to 3 treatment groups: sulfadoxine-pyrimethamine (SP; 3 tablets, 500 mg sulfadoxine and 25 mg pyrimethamine per tablet); SP plus azithromycin (1 g/dayx2 days); or SP plus artesunate (200 mg/dayx3 days). Women received two doses administered at least 4 weeks apart. Heteroduplex tracking assays were performed to distinguish recrudescence from new infections. Main outcome measures were incidence of adverse outcomes, parasite and fever clearance times and recrudescence rates. All treatment regimens were well tolerated. Two women vomited soon after ingesting azithromycin. The parasite clearance time was significantly faster in the SP-artesunate group. Recrudescent episodes of malaria were less frequent with SP-azithromycin [Hazard Ratio 0.19 (95% confidence interval 0.06 to 0.63)] and SP-artesunate [Hazard Ratio 0.25 (95% confidence interval 0.10 to 0.65)] compared with SP monotherapy. With one exception (an abortion in the SP-azithromycin group), all adverse pregnancy outcomes could be attributed to known infectious or obstetrical causes. Because of the small sample size, the effect on birth outcomes, maternal malaria or maternal anemia could not be evaluated.Both SP-artesunate and SP-azithromycin appeared to be safe, well tolerated and efficacious for the treatment of malaria during pregnancy. A larger study is needed to determine their safety and efficacy in preventing poor birth outcomes.ClinialTrials.gov NCT00287300

    Cationic Amino Acid Transporter-2 Regulates Immunity by Modulating Arginase Activity

    Get PDF
    Cationic amino acid transporters (CAT) are important regulators of NOS2 and ARG1 activity because they regulate L-arginine availability. However, their role in the development of Th1/Th2 effector functions following infection has not been investigated. Here we dissect the function of CAT2 by studying two infectious disease models characterized by the development of polarized Th1 or Th2-type responses. We show that CAT2−/− mice are significantly more susceptible to the Th1-inducing pathogen Toxoplasma gondii. Although T. gondii infected CAT2−/− mice developed stronger IFN-γ responses, nitric oxide (NO) production was significantly impaired, which contributed to their enhanced susceptibility. In contrast, CAT2−/− mice infected with the Th2-inducing pathogen Schistosoma mansoni displayed no change in susceptibility to infection, although they succumbed to schistosomiasis at an accelerated rate. Granuloma formation and fibrosis, pathological features regulated by Th2 cytokines, were also exacerbated even though their Th2 response was reduced. Finally, while IL-13 blockade was highly efficacious in wild-type mice, the development of fibrosis in CAT2−/− mice was largely IL-13-independent. Instead, the exacerbated pathology was associated with increased arginase activity in fibroblasts and alternatively activated macrophages, both in vitro and in vivo. Thus, by controlling NOS2 and arginase activity, CAT2 functions as a potent regulator of immunity

    Combined Treatment of Heterocyclic Analogues and Benznidazole upon Trypanosoma cruzi In Vivo

    Get PDF
    Chagas disease caused by Trypanosoma cruzi is an important cause of mortality and morbidity in Latin America but no vaccines or safe chemotherapeutic agents are available. Combined therapy is envisioned as an ideal approach since it may enhance efficacy by acting upon different cellular targets, may reduce toxicity and minimize the risk of drug resistance. Therefore, we investigated the activity of benznidazole (Bz) in combination with the diamidine prodrug DB289 and in combination with the arylimidamide DB766 upon T. cruzi infection in vivo. The oral treatment of T.cruzi-infected mice with DB289 and Benznidazole (Bz) alone reduced the number of circulating parasites compared with untreated mice by about 70% and 90%, respectively. However, the combination of these two compounds decreased the parasitemia by 99% and protected against animal mortality by 100%, but without providing a parasitological cure. When Bz (p.o) was combined with DB766 (via ip route), at least a 99.5% decrease in parasitemia levels was observed. DB766+Bz also provided 100% protection against mice mortality while Bz alone provided about 87% protection. This combined therapy also reduced the tissular lesions induced by T. cruzi infection: Bz alone reduced GPT and CK plasma levels by about 12% and 78% compared to untreated mice group, the combination of Bz with DB766 resulted in a reduction of GPT and CK plasma levels of 56% and 91%. Cure assessment through hemocultive and PCR approaches showed that Bz did not provide a parasitological cure, however, DB766 alone or associated with Bz cured ≥13% of surviving animals

    Stacking Interactions in Denaturation of DNA Fragments

    Full text link
    A mesoscopic model for heterogeneous DNA denaturation is developed in the framework of the path integral formalism. The base pair stretchings are treated as one-dimensional, time dependent paths contributing to the partition function. The size of the paths ensemble, which measures the degree of cooperativity of the system, is computed versus temperature consistently with the model potential physical requirements. It is shown that the ensemble size strongly varies with the molecule backbone stiffness providing a quantitative relation between stacking and features of the melting transition. The latter is an overall smooth crossover which begins from the \emph{adenine-thymine} rich portions of the fragment. The harmonic stacking coupling shifts, along the TT-axis, the occurrence of the multistep denaturation but it does not change the character of the crossover. The methods to compute the fractions of open base pairs versus temperature are discussed: by averaging the base pair displacements over the path ensemble we find that such fractions signal the multisteps of the transition in good agreement with the indications provided by the specific heat plots.Comment: European Physical Journal E (2011) in pres

    Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain

    Get PDF
    The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed
    • …
    corecore