984 research outputs found

    Refractory metals welded or brazed with tungsten inert gas equipment

    Get PDF
    Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere

    Inert-gas welding and brazing enclosure fabricated from sheet plastic

    Get PDF
    Custom-fabricated plastic bag maintains an inert-gas atmosphere for welding and brazing certain metals. The bag fits over part of the workpieces and the welding and brazing tools. It is also used for metal brazing and fusion plating which require an inert-gas atmosphere

    Ultrasound imaging of tumor perfusion

    Get PDF

    2,6-Diamino­pyridinium tetra­phenyl­borate–1,2-bis­(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene (1/1)

    Get PDF
    In the title compound, C5H8N3 +·C24H20B−·C20H18N6, the 1,2-bis­(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene mol­ecule is essentially planar (r.m.s. deviation = 0.0045 Å) and aligned in nearly coplanar manner with the 2,6-diamino­pyridinium ion, making a dihedral angle of 5.19 (5)°. The diamino­pyridine mol­ecule is protonated on the central pyridine N atom and the B atom bears the counter-charge. The amine groups of the diamino pyridinium cation form intra­molecular N—H⋯N hydrogen bonds, resulting in linear and bent inter­actions with the naphthyridine ring system

    Reflections on the Concept of Operator Workload

    Get PDF

    Impact of culture towards disaster risk reduction

    Get PDF
    Number of natural disasters has risen sharply worldwide making the risk of disasters a global concern. These disasters have created significant losses and damages to humans, economy and society. Despite the losses and damages created by disasters, some individuals and communities do not attached much significance to natural disasters. Risk perception towards a disaster not only depends on the danger it could create but also the behaviour of the communities and individuals that is governed by their culture. Within this context, this study examines the relationship between culture and disaster risk reduction (DRR). A comprehensive literature review is used for the study to evaluate culture, its components and to analyse a series of case studies related to disaster risk. It was evident from the study that in some situations, culture has become a factor for the survival of the communities from disasters where as in some situations culture has acted as a barrier for effective DRR activities. The study suggests community based DRR activities as a mechanism to integrate with culture to effectively manage disaster risk

    Pattern and Outcome of Chest Injuries at Bugando Medical Centre in Northwestern Tanzania.

    Get PDF
    Chest injuries constitute a continuing challenge to the trauma or general surgeon practicing in developing countries. This study was conducted to outline the etiological spectrum, injury patterns and short term outcome of these injuries in our setting. This was a prospective study involving chest injury patients admitted to Bugando Medical Centre over a six-month period from November 2009 to April 2010 inclusive. A total of 150 chest injury patients were studied. Males outnumbered females by a ratio of 3.8:1. Their ages ranged from 1 to 80 years (mean = 32.17 years). The majority of patients (72.7%) sustained blunt injuries. Road traffic crush was the most common cause of injuries affecting 50.7% of patients. Chest wall wounds, hemothorax and rib fractures were the most common type of injuries accounting for 30.0%, 21.3% and 20.7% respectively. Associated injuries were noted in 56.0% of patients and head/neck (33.3%) and musculoskeletal regions (26.7%) were commonly affected. The majority of patients (55.3%) were treated successfully with non-operative approach. Underwater seal drainage was performed in 39 patients (19.3%). One patient (0.7%) underwent thoracotomy due to hemopericardium. Thirty nine patients (26.0%) had complications of which wound sepsis (14.7%) and complications of long bone fractures (12.0%) were the most common complications. The mean LOS was 13.17 days and mortality rate was 3.3%. Using multivariate logistic regression analysis, associated injuries, the type of injury, trauma scores (ISS, RTS and PTS) were found to be significant predictors of the LOS (P < 0.001), whereas mortality was significantly associated with pre-morbid illness, associated injuries, trauma scores (ISS, RTS and PTS), the need for ICU admission and the presence of complications (P < 0.001). Chest injuries resulting from RTCs remain a major public health problem in this part of Tanzania. Urgent preventive measures targeting at reducing the occurrence of RTCs is necessary to reduce the incidence of chest injuries in this region

    Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket

    Full text link
    [EN] The prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. The emptying process can affect the safety and the efficiency of water systems. Current research presents an analysis of the emptying process using experimental and computational results. The phenomenon is simulated using the two-dimensional computational fluid dynamics (2D CFD) and the one-dimensional mathematical (1D) models. A backflow air analysis is also provided based on CFD simulations. The developed models show good ability in the prediction of the sub-atmospheric pressure and the flow velocity in the system. In most of the cases, the 1D and 2D CFD models show similar performance in the prediction of the pressure and the velocity results. The backflow air development can be accurately explained using the CFD model.This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal under grant number PD/BD/114459/2016.Besharat, M.; Coronado-Hernández, OE.; Fuertes-Miquel, VS.; Viseu, MT.; Ramos, HM. (2018). Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water Journal. 15(8):769-779. https://doi.org/10.1080/1573062X.2018.1540711S769779158Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2), 209-248. doi:10.1017/s0022112068000133Besharat, M., Teresa Viseu, M., & Ramos, H. (2017). Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events. Water, 9(1), 63. doi:10.3390/w9010063Besharat, M., Tarinejad, R., & Ramos, H. M. (2015). The effect of water hammer on a confined air pocket towards flow energy storage system. Journal of Water Supply: Research and Technology-Aqua, 65(2), 116-126. doi:10.2166/aqua.2015.081Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resources Management, 30(8), 2687-2702. doi:10.1007/s11269-016-1310-1Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578Edmunds, R. C. (1979). Air Binding in Pipes. Journal - American Water Works Association, 71(5), 272-277. doi:10.1002/j.1551-8833.1979.tb04348.xEscarameia, M. (2007). Investigating hydraulic removal of air from water pipelines. Proceedings of the Institution of Civil Engineers - Water Management, 160(1), 25-34. doi:10.1680/wama.2007.160.1.25Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518Kader, B. A. (1981). Temperature and concentration profiles in fully turbulent boundary layers. International Journal of Heat and Mass Transfer, 24(9), 1541-1544. doi:10.1016/0017-9310(81)90220-9Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56. doi:10.1080/00221680903565911Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506-519. doi:10.1080/00221686.2016.1275046Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353Pozos, O., Gonzalez, C. A., Giesecke, J., Marx, W., & Rodal, E. A. (2010). Air entrapped in gravity pipeline systems. Journal of Hydraulic Research, 48(3), 338-347. doi:10.1080/00221686.2010.481839Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695Richards, R. T. (1962). Air Binding in Water Pipelines. Journal - American Water Works Association, 54(6), 719-730. doi:10.1002/j.1551-8833.1962.tb00883.xTijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508Triki, A. (2015). Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section. Acta Mechanica, 227(3), 777-793. doi:10.1007/s00707-015-1493-1Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984)Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., … Xu, C. (2016). CFD Approach for Column Separation in Water Pipelines. Journal of Hydraulic Engineering, 142(10), 04016036. doi:10.1061/(asce)hy.1943-7900.0001171Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625)Zhou, L., Liu, D., & Karney, B. (2013). Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline. Journal of Hydraulic Engineering, 139(9), 949-959. doi:10.1061/(asce)hy.1943-7900.0000750Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., & Guo, S. (2018). Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline. Journal of Hydraulic Engineering, 144(8), 04018045. doi:10.1061/(asce)hy.1943-7900.0001491Zukoski, E. E. (1966). Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. Journal of Fluid Mechanics, 25(4), 821-837. doi:10.1017/s002211206600044
    corecore