2,452 research outputs found

    Land use mapping and change detection using ERTS imagery in Montgomery County, Alabama

    Get PDF
    The feasibility of using remotely sensed data from ERTS-1 for mapping land use and detecting land use change was investigated. Land use information was gathered from 1964 air photo mosaics and from 1972 ERTS data. The 1964 data provided the basis for comparison with ERTS-1 imagery. From this comparison, urban sprawl was quite evident for the city of Montgomery. A significant trend from forestland to agricultural was also discovered. The development of main traffic arteries between 1964 and 1972 was a vital factor in the development of some of the urban centers. Even though certain problems in interpreting and correlating land use data from ERTS imagery were encountered, it has been demonstrated that remotely sensed data from ERTS is useful for inventorying land use and detecting land use change

    XMM-Newton Observations of the Be/X-ray transient A0538-66 in quiescence

    Full text link
    We present XMM-Newton observations of the recurrent Be/X-ray transient A0538-66, situated in the Large Magellanic Cloud, in the quiescent state. Despite a very low luminosity state of (5-8)E33 ergs/s in the range 0.3-10 keV, the source is clearly detected up to ~8 keV. and can be fitted using either a power law with photon index alpha=1.9+-0.3 or a bremsstrahlung spectrum with kT=3.9+3.9-1.7 keV. The spectral analysis confirms that the off-state spectrum is hard without requiring any soft component, contrary to the majority of neutron stars observed in quiescence up to now.Comment: Accepted for proceedings of 5th INTEGRAL Worksho

    Langevin Dynamics simulations of a 2-dimensional colloidal crystal under confinement and shear

    Full text link
    Langevin Dynamics simulations are used to study the effect of shear on a two-dimensional colloidal crystal confined by structured parallel walls. When walls are sheared very slowly, only two or three crystalline layers next to the walls move along with them, while the inner layers of the crystal are only slightly tilted. At higher shear velocities, this inner part of the crystal breaks into several pieces with different orientations. The velocity profile across the slit is reminiscent of shear-banding in flowing soft materials, where liquid and solid regions coexist; the difference, however, is that in the latter case the solid regions are glassy while here they are crystalline. At even higher shear velocities, the effect of the shearing becomes smaller again. Also the effective temperature near the walls (deduced from the velocity distributions of the particles) decreases again when the wall velocity gets very large. When the walls are placed closer together, thereby introducing a misfit, a structure containing a soliton staircase arises in simulations without shear. Introducing shear increases the disorder in these systems until no solitons are visible any more. Instead, similar structures like in the case without misfit result. At high shear rates, configurations where the incommensurability of the crystalline structure is compensated by the creation of holes become relevant

    Short term X-ray rms variability of Cyg X-1

    Full text link
    A linear dependence of the amplitude of broadband noise variability on flux for GBHC and AGN has been recently shown by Uttley & McHardy (2001). We present the long term evolution of this rms-flux-relation for Cyg X-1 as monitored from 1998-2002 with RXTE. We confirm the linear relationship in the hard state and analyze the evolution of the correlation for the period of 1996-2002. In the intermediate and the soft state, we find considerable deviations from the otherwise linear relationship. A possible explanation for the rms-flux-relation is a superposition of local mass accretion rate variations.Comment: 3 pages, 3 figures, Proceedings of the 4th Microquasar Workshop, eds. Ph Durouchoux, Y. Fuchs and J. Rodriguez, published by the Center for Space Physics: Kolkat

    Low Luminosity States of the Black Hole Candidate GX 339-4. I. ASCA and Simultaneous Radio/RXTE Observations

    Get PDF
    We discuss a series of observations of the black hole candidate GX 339-4 in low luminosity, spectrally hard states. We present spectral analysis of three separate archival Advanced Satellite for Cosmology and Astrophysics (ASCA) data sets and eight separate Rossi X-ray Timing Explorer (RXTE) data sets. Three of the RXTE observations were strictly simultaneous with 843 MHz and 8.3-9.1 GHz radio observations. All of these observations have (3-9 keV) flux approximately < 10^{-9} ergs s^{-1} cm^{-2}. The ASCA data show evidence for an 6.4 keV Fe line with equivalent width 40 eV, as well as evidence for a soft excess that is well-modeled by a power law plus a multicolor blackbody spectrum with peak temperature 150-200 eV. The RXTE data sets also show evidence of an Fe line with equivalent widths 20-140 eV. Reflection models show a hardening of the RXTE spectra with decreasing X-ray flux; however, these models do not exhibit evidence of a correlation between the photon index of the incident power law flux and the solid angle subtended by the reflector. `Sphere+disk' Comptonization models and Advection Dominated Accretion Flow (ADAF) models also provide reasonable descriptions of the RXTE data. The former models yield coronal temperatures in the range 20-50 keV and optical depths of \tau ~ 3. The model fits to the X-ray data, however, do not simultaneously explain the observed radio properties. The most likely source of the radio flux is synchrotron emission from an extended outflow of size greater than O(10^7 GM/c^2).Comment: 18 pages in latex emulateapj.sty. Accepted for publication in the Astrophysical Journa

    Polarized Gamma-ray Emission from the Galactic Black Hole Cygnus X-1

    Get PDF
    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope. Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.Comment: 11 pages, 3 figures, to be published in Science in April 22nd 2011, available on Science Express Web site (March 24th edition

    Chandra and RXTE spectroscopy of the accreting msec pulsar IGR J00291+5934

    Get PDF
    We report on an observation of the recently discovered accreting millisecond X-ray pulsar IGR J00291+5934 performed with the RXTE-Proportional Counter Array (PCA) and Chandra-High Energy Transmission Grating Spectrometer (HETGS). The RXTE data are from a twoweek follow-up of the source, while the Chandra observation took place around the end of the follow-up, about 12 days after the discovery of the source, when the source flux had decreased already by a factor of ten. The analysis of the Chandra data allowed us to extract the most precise X-ray position of IGR J00291+5934, RA = 00h 29m 03.08s, and Dec =+59◦ 34 19.2 (0.6 error), compatible with the optical and radio ones. We find that the spectra of IGR J00291+5934 can be described by a combination of a thermal component and a power-law. Along the outburst detected by PCA, the power-law photon index showed no particular trend, while the thermal component (∼1 keV, interpreted as a hot spot on the neutron star surface) became weaker until non-detection. In the simultaneous observation of the weak Chandra /RXTE spectrum, there was no longer any indication of the ∼1 keV thermal component, while we detected a colder thermal component (∼0.4 keV) that we interpret as the emission from the cold disc. A hint of a 6.4 keV iron line was detected, together with an excess around 6.8 keV and absorption feature around 7.1 keV. The last two features have never been detected in the spectra of accretion-driven millisecond pulsars before and, if confirmed, would suggest the presence of an expanding hot corona with high outflow velocities

    New insights into ultraluminous X-ray sources from deep XMM-Newton observations

    Full text link
    The controversy over whether ultraluminous X-ray sources (ULXs) contain a new intermediate-mass class of black holes (IMBHs) remains unresolved. We present new analyses of the deepest XMM-Newton observations of ULXs that address their underlying nature. We examine both empirical and physical modelling of the X-ray spectra of a sample of thirteen of the highest quality ULX datasets, and find that there are anomalies in modelling ULXs as accreting IMBHs with properties simply scaled-up from Galactic black holes. Most notably, spectral curvature above 2 keV in several sources implies the presence of an optically-thick, cool corona. We also present a new analysis of a 100 ks observation of Holmberg II X-1, in which a rigorous analysis of the temporal data limits the mass of its black hole to no more than 100 solar masses. We argue that a combination of these results points towards many (though not necessarily all) ULXs containing black holes that are at most a few 10s of solar mass in size.Comment: 5 pages, 2 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    A Suzaku X-ray observation of one orbit of the supergiant fast X-ray transient IGR J16479-4514

    Get PDF
    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. About 80% of the short orbital period (Porb=3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state lasting the first 46 ks (1E-13 erg/cm2/s, 1-10 keV), consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of (6-7)x10^-12 erg/cm2/s punctuated by two structured faint flares with a duration of about 10 and 15 ks. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho=7E-14 g/cm3. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio Mdot_w/v_terminal = 7E-17 solar masses/km which, assuming terminal velocities in a large range 500-3000 km/s, implies an accretion luminosity two orders of magnitude higher than that observed. As a consequence, a mechanism is at work reducing the mass accretion rate. Different possibilities are discussed.Comment: Accepted for publication in MNRAS. 10 pages, 5 figure
    • …
    corecore