3,644 research outputs found

    Copernicus Downstream Service Supports Nature-Based Flood Defense: Use of Sentinel Earth Observation Satellites for Coastal Needs

    Get PDF
    This is a copy of the article published in Sea-Technology Magazine, which the authors have bought the rights to redistribute.With an uncertain future that includes climate change, sea level rise and increasing coastal populations, being able to make informed policy decisions in coastal zones will be critical for ensuring the well-being of citizens, the environment and the sustainability of economic activities. Earth observation (EO) can be used to efficiently and systematically provide the key information needed to make these decisions. However, getting access to the right EO in- formation can be a complicated and costly business, limiting availability. However, the launch in April 2014 of the first Sentinel satellite from Europe’s flagship EO program, Copernicus, represents a major advance in the availability of EO data, which has great potential to benefit numerous sectors involved in marine and coastal activities. We discuss some examples of applications being developed and give an example of a new service which intends to support nature-based flood defense schemes.The research leading to these results has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement n° 607131. All views presented are those of the authors. The EU is not liable for any use that may be made of the information contained herein.PDF, 5 pages, 20.4 M

    Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field

    Get PDF
    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with, and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film.Comment: 9 pages, 7 figure

    Electromagnetically Induced Transparency with an Ensemble of Donor-Bound Electron Spins in a Semiconductor

    Get PDF
    We present measurements of electromagnetically induced transparency with an ensemble of donor- bound electrons in low-doped n-GaAs. We used optical transitions from the Zeeman-split electron spin states to a bound trion state in samples with optical densities of 0.3 and 1.0. The electron spin dephasing time T* \approx 2 ns was limited by hyperfine coupling to fluctuating nuclear spins. We also observe signatures of dynamical nuclear polarization, but find these effects to be much weaker than in experiments that use electron spin resonance and related experiments with quantum dots.Comment: 4 pages, 4 figures; Improved analysis of data in Fig. 3, corrected factors of 2 and p

    Asymmetry and decoherence in a double-layer persistent-current qubit

    Full text link
    Superconducting circuits fabricated using the widely used shadow evaporation technique can contain unintended junctions which change their quantum dynamics. We discuss a superconducting flux qubit design that exploits the symmetries of a circuit to protect the qubit from unwanted coupling to the noisy environment, in which the unintended junctions can spoil the quantum coherence. We present a theoretical model based on a recently developed circuit theory for superconducting qubits and calculate relaxation and decoherence times that can be compared with existing experiments. Furthermore, the coupling of the qubit to a circuit resonance (plasmon mode) is explained in terms of the asymmetry of the circuit. Finally, possibilities for prolonging the relaxation and decoherence times of the studied superconducting qubit are proposed on the basis of the obtained results.Comment: v.2: published version; 8 pages, 12 figures; added comparison with experiment, improved discussion of T_ph

    Decoherence of Flux Qubits Coupled to Electronic Circuits

    Full text link
    On the way to solid-state quantum computing, overcoming decoherence is the central issue. In this contribution, we discuss the modeling of decoherence of a superonducting flux qubit coupled to dissipative electronic circuitry. We discuss its impact on single qubit decoherence rates and on the performance of two-qubit gates. These results can be used for designing decoherence-optimal setups.Comment: 16 pages, 5 figures, to appear in Advances in Solid State Physics, Vol. 43 (2003

    Modelling a spiralling type of non-locally reacting liner

    Get PDF

    Coping with Open Innovation: Responding to the Challenges of External Engagement in R&D

    No full text
    Open innovation often requires wholesale changes to the nature of R&D. However, academic research and managerial practice have paid little attention to the challenges that individuals face in the daily pursuit of open innovation. As a result, there is little understanding of how individuals cope with open innovation, and which organizational practices can support them in this role. Drawing on the experiences of R&D professionals, this article identifies four specific challenges and coping strategies of individuals engaged in open innovation. It proposes a range of open innovation practices that organizations can implement to better equip their staff to undertake effective external engagement

    Suppressed spin dephasing for 2D and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    Get PDF
    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the fingerprint of a suppression that is enhanced due to a strong anisotropy in spin-orbit fields that can occur when the Rashba and Dresselhaus contributions are engineered to cancel each other. A surprising observation is that this mechanisms for suppressing spin dephasing is not only effective for electrons in the heterojunction quantum well, but also for electrons in a deeper bulk layer.Comment: 5 pages, 3 figure
    corecore