We present the design and operation of a fiber-based cryogenic confocal
microscope. It is designed as a compact cold-finger that fits inside the bore
of a superconducting magnet, and which is a modular unit that can be easily
swapped between use in a dilution refrigerator and other cryostats. We aimed at
application in quantum optical experiments with electron spins in
semiconductors and the design has been optimized for driving with, and
detection of optical fields with well-defined polarizations. This was
implemented with optical access via a polarization maintaining fiber together
with Voigt geometry at the cold finger, which circumvents Faraday rotations in
the optical components in high magnetic fields. Our unit is versatile for use
in experiments that measure photoluminescence, reflection, or transmission, as
we demonstrate with a quantum optical experiment with an ensemble of
donor-bound electrons in a thin GaAs film.Comment: 9 pages, 7 figure