249 research outputs found
Weak Ferromagnetism and Excitonic Condensates
We investigate a model of excitonic ordering (i.e electron-hole pair
condensation) appropriate for the divalent hexaborides. We show that the
inclusion of imperfectly nested electron hole Fermi surfaces can lead to the
formation of an undoped excitonic metal phase. In addition, we find that weak
ferromagnetism with compensated moments arises as a result of gapless
excitations. We study the effect of the low lying excitations on the density of
states, Fermi surface topology and optical conductivity and compare to
available experimental data.Comment: 10 Pages, 8 Figures, RevTe
Spin-polaron model: transport properties of EuB
To understand anomalous transport properties of EuB, we have studied the
spin-polaron Hamiltonian incorporating the electron-phonon interaction.
Assuming a strong exchange interaction between the carriers and the localized
spins, the electrical conductivity is calculated. The temperature and magnetic
field dependence of the resistivity of EuB are well explained. At low
temperature, magnons dominate the conduction process, whereas the lattice
contribution becomes significant at very high temperature due to the scattering
with the phonons. Large negative magnetoresistance near the ferromagnetic
transition is also reproduced as observed in EuB.Comment: 4 pages, 3 figures, accepted in Phys. Rev.
Anomalous NMR Spin-Lattice Relaxation in SrB_{6} and Ca_{1-x}La_{x}B_{6}
We report the results of {11}B nuclear magnetic resonance (NMR) measurements
of SrB_{6} and Ca_{0.995}La_{0.05}B_{6} below room temperature. Although the
electrical resistivities of these two materials differ substantially, their
{11}B-NMR responses exhibit some strikingly common features. Both materials
exhibit ferromagnetic order, but their {11}B-NMR spectra reveal very small
hyperfine fields at the Boron sites. The spin lattice relaxation T_{1}^{-1}
varies considerably with external field but changes with temperature only below
a few K. We discuss these unusual results by considering various different
scenarios for the electronic structure of these materials.Comment: Accepted for publication in Phys. Rev. B Rapid communication, 4
pages, 3 figures. This manuscript replaces an earlier version and includes
some minor changes in the text and in Fig.
Distinctive rings in the 21 cm signal of the epoch of reionization
It is predicted that sources emitting UV radiation in the Lyman band during
the epoch of reionization (EoR) showed a series of discontinuities in their
Ly-alpha flux radial profile as a consequence of the thickness of the Lyman
line series in the primeval intergalactic medium. Through unsaturated
Wouthuysen-Field coupling, these spherical discontinuities are also present in
the 21 cm emission of the neutral IGM. In this article, we study the effects
these discontinuities have on the differential brightness temperature of the 21
cm signal of neutral hydrogen in a realistic setting including all other
sources of fluctuations. We focus on the early phases of the EoR, and we
address the question of the detectability by the planned Square Kilometre
Array. Such a detection would be of great interest, because these structures
could provide an unambiguous diagnostic for the cosmological origin of the
signal remaining after the foreground cleaning procedure. Also, they could be
used as a new type of standard rulers. We determine the differential brightness
temperature of the 21 cm signal in the presence of inhomogeneous
Wouthuysen-Field effect using simulations which include (hydro)dynamics and
both ionizing and Lyman lines 3D radiative transfer with the code LICORICE. We
find that the Lyman horizons are clearly visible on the maps and radial
profiles around the first sources of our simulations, but for a limited time
interval, typically \Delta z \approx 2 at z \sim 13. Stacking the profiles of
the different sources of the simulation at a given redshift results in
extending this interval to \Delta z \approx 4. When we take into account the
implementation and design planned for the SKA (collecting area, sensitivity,
resolution), we find that detection will be challenging. It may be possible
with a 10 km diameter for the core, but will be difficult with the currently
favored design of a 5 km core.Comment: 10 pages, 10 figures; v2: Section 5.5 rewritten; some new references
added; accepted for publication in Astronomy and Astrophysic
CaB_6: a new semiconducting material for spin electronics
Ferromagnetism was recently observed at unexpectedly high temperatures in
La-doped CaB_6. The starting point of all theoretical proposals to explain this
observation is a semimetallic electronic structure calculated for CaB_6 within
the local density approximation. Here we report the results of parameter-free
quasiparticle calculations of the single-particle excitation spectrum which
show that CaB_6 is not a semimetal but a semiconductor with a band gap of 0.8
eV. Magnetism in La_xCa_{1-x}B_6 occurs just on the metallic side of a Mott
transition in the La-induced impurity band.Comment: 4 pages, 1 postscript figur
Origin for the enhanced copper spin echo decay rate in the pseudogap regime of the multilayer high-T_c cuprates
We report measurements of the anisotropy of the spin echo decay for the inner
layer Cu site of the triple layer cuprate, Hg_0.8Re_0.2Ba_2Ca_2Cu_3O_8 (T_c=126
K) in the pseudogap T regime below T_pg ~ 170 K and the corresponding analysis
for their interpretation. As the field alignment is varied, the shape of the
decay curve changes from Gaussian (H_0 \parallel c) to single exponential (H_0
\perp c). The latter characterizes the decay caused by the fluctuations of
adjacent Cu nuclear spins caused by their interactions with electron spins. The
angular dependence of the second moment (T_{2M}^{-2} \equiv )
deduced from the decay curves indicates that T_{2M}^{-2} for H_0 \parallel c,
which is identical to T_{2G}^{-2} (T_{2G} is the Gaussian component), is
substantially enhanced, as seen in the pseudogap regime of the bilayer systems.
Comparison of T_{2M}^{-2} between H_0 \parallel c and H_0 \perp c indicates
that this enhancement is caused by electron spin correlations between the inner
and the outer CuO_2 layers. These results provide the answer to the
long-standing controversy regarding the opposite T dependences of (T_1T)^{-1}
and T_{2G}^{-2} in the pseudogap regime of bi- and trilayer systems.Comment: 4 pages, 4 figure
Theory of High \tc Ferromagnetism in family: A case of Doped Spin-1 Mott insulator in a Valence Bond Solid Phase
Doped divalent hexaborides such as exhibit high \tc
ferromagnetism. We isolate a degenerate pair of -orbitals of boron with two
valence electrons, invoke electron correlation and Hund coupling, to suggest
that the undoped state is better viewed as a spin-1 Mott insulator; it is
predicted to be a type of 3d Haldane gap phase with a spin gap ,
much smaller than the charge gap of seen in ARPES. The
experimentally seen high \tc `ferromagnetism' is argued to be a complex
magnetic order in disguise - either a canted 6-sublattice AFM ()
order or its quantum melted version, a chiral spin liquid state, arising from a
type of double exchange mechanism.Comment: 4 pages, 2 figures; minor corrections, references adde
Point defects, ferromagnetism and transport in calcium hexaboride
The formation energy and local magnetic moment of a series of point defects
in CaB are computed using a supercell approach within the generalized
gradient approximation to density functional theory. Based on these results,
speculations are made as to the influence of these defects on electrical
transport. It is found that the substitution of Ca by La does not lead to the
formation of a local moment, while a neutral B vacancy carries a moment of
2.4 Bohr magnetons, mostly distributed over the six nearest-neighbour B atoms.
A plausible mechanism for the ferromagnetic ordering of these moments is
suggested. Since the same broken B-B bonds appear on the preferred (100)
cleavage planes of the CaB structure, it is argued that internal surfaces
in polycrystals as well as external surfaces in general will make a large
contribution to the observed magnetization.Comment: Calculated defect formation energies had to be corrected, due to the
use of a wrong reference energy for the perfect crystal in the original pape
High Magnetic Field NMR Studies of LiVGeO, a quasi 1-D Spin System
We report Li pulsed NMR measurements in polycrystalline and single
crystal samples of the quasi one-dimensional S=1 antiferromagnet
LiVGeO, whose AF transition temperature is K.
The field () and temperature () ranges covered were 9-44.5 T and
1.7-300 K respectively. The measurements included NMR spectra, the spin-lattice
relaxation rate (), and the spin-phase relaxation rate (),
often as a function of the orientation of the field relative to the crystal
axes. The spectra indicate an AF magnetic structure consistent with that
obtained from neutron diffraction measurements, but with the moments aligned
parallel to the c-axis. The spectra also provide the -dependence of the AF
order parameter and show that the transition is either second order or weakly
first order. Both the spectra and the data show that has at
most a small effect on the alignment of the AF moment. There is no spin-flop
transition up to 44.5 T. These features indicate a very large magnetic
anisotropy energy in LiVGeO with orbital degrees of freedom playing an
important role. Below 8 K, varies substantially with the orientation
of in the plane perpendicular to the c-axis, suggesting a small energy
gap for magnetic fluctuations that is very anisotropic.Comment: submitted to Phys. Rev.
Charge dynamics and "ferromagnetism" of A1-xLaxB6 (A=Ca and Sr)
Ferromagnetism has been reported recently in La-doped alkaline-earth
hexaborides, A1-xLaxB6 (A=Ca, Sr, and Ba). We have performed the reflectivity,
Hall resistivity, and magnetization measurements of A1-xLaxB6. The results
indicate that A1-xLaxB6 can be regarded as a simple doped semimetal, with no
signature of an excitonic state as suggested by several theories. It is also
found that the surface of as-grown samples (10 micrometer in thickness) has a
different electronic structure from a bulk one, and a fairly large number of
paramagnetic moments are confined in this region. After eliminating these
paramagnetic moments at the surface, we could not find any evidence of an
intrinsic ferromagnetic moment in our samples, implying the possibility that
the ferromagnetism of A1-xLaxB6 reported so far is neither intrinsic.Comment: 7 pages, 8 figure
- …
