189 research outputs found

    Fluctuation-Driven Molecular Transport in an Asymmetric Membrane Channel

    Get PDF
    Channel proteins, that selectively conduct molecules across cell membranes, often exhibit an asymmetric structure. By means of a stochastic model, we argue that channel asymmetry in the presence of non-equilibrium fluctuations, fueled by the cell's metabolism as observed recently, can dramatically influence the transport through such channels by a ratchet-like mechanism. For an aquaglyceroporin that conducts water and glycerol we show that a previously determined asymmetric glycerol potential leads to enhanced inward transport of glycerol, but for unfavorably high glycerol concentrations also to enhanced outward transport that protects a cell against poisoning.Comment: REVTeX4, 4 pages, 3 figures; Accepted for publication in Phys. Rev. Let

    Requirements for a Dashboard to Support Quality Improvement Teams in Pain Management

    Get PDF
    Pain management is often considered lower priority than many other aspects of health management in hospitals. However, there is potential for Quality Improvement (QI) teams to improve pain management by visualising and exploring pain data sets. Although dashboards are already used by QI teams in hospitals, there is limited evidence of teams accessing visualisations to support their decision making. This study aims to identify the needs of the QI team in a UK Critical Care Unit (CCU) and develop dashboards that visualise longitudinal data on the efficacy of patient pain management to assist the team in making informed decisions to improve pain management within the CCU. This research is based on an analysis of transcripts of interviews with healthcare professionals with a variety of roles in the CCU and their evaluation of probes. We identified two key uses of pain data: direct patient care (focusing on individual patient data) and QI (aggregating data across the CCU and over time); in this paper, we focus on the QI role. We have identified how CCU staff currently interpret information and determine what supplementary information can better inform their decision making and support sensemaking. From these, a set of data visualisations has been proposed, for integration with the hospital electronic health record. These visualisations are being iteratively refined in collaboration with CCU staff and technical staff responsible for maintaining the electronic health record. The paper presents user requirements for QI in pain management and a set of visualisations, including the design rationale behind the various methods proposed for visualising and exploring pain data using dashboards

    Genetic diversity of Colletotrichum lupini and its virulence on white and Andean lupin

    Get PDF
    Lupin cultivation worldwide is threatened by anthracnose, a destructive disease caused by the seed- and air-borne fungal pathogen Colletotrichum lupini. In this study we explored the intraspecific diversity of 39 C. lupini isolates collected from different lupin cultivating regions around the world, and representative isolates were screened for their pathogenicity and virulence on white and Andean lupin. Multi-locus phylogeny and morphological characterizations showed intraspecific diversity to be greater than previously shown, distinguishing a total of six genetic groups and ten distinct morphotypes. Highest diversity was found across South America, indicating it as the center of origin of C. lupini. The isolates that correspond to the current pandemic belong to a genetic and morphological uniform group, were globally widespread, and showed high virulence on tested white and Andean lupin accessions. Isolates belonging to the other five genetic groups were mostly found locally and showed distinct virulence patterns. Two highly virulent strains were shown to overcome resistance of advanced white lupin breeding material. This stresses the need to be careful with international seed transports in order to prevent spread of currently confined but potentially highly virulent strains. This study improves our understanding of the diversity, phylogeography and pathogenicity of a member of one of the world’s top 10 plant pathogen genera, providing valuable information for breeding programs and future disease management

    Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases

    Get PDF
    Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination

    GUP1 and its close homologue GUP2, encoding multi-membrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae

    Get PDF
    Many yeast species can utilise glycerol, both as sole carbon source and as an osmolyte. In Saccharomyces cerevisiae, physiological studies have previously shown the presence of an active uptake system driven by electrogenic proton symport. We have used transposon mutagenesis to isolate mutants affected in the transport of glycerol into the cell. Here we present the identification of YGL084c, encoding a multi-membrane-spanning protein, as being essential for proton symport of glycerol into Saccharomyces cerevisiae. The gene is named GUP1 (Glycerol UPtake) and is important for growth on glycerol as carbon and energy source, as well as for osmotic protection by added glycerol, of a strain deficient in glycerol production. Another ORF, YPL189w, presenting a high degree of homology to YGL084c, similarly appears to be involved in active glycerol uptake in salt-containing glucose-based media in strains deficient in glycerol production. Analogously, this gene is named GUP2. To our knowledge, this is the first report on a gene product involved in active transport of glycerol in yeasts. Mutations with the same phenotypes occurred in two other open reading frames of previously unknown function, YDL074c and YPL180w.Comunidade Europeia (CE) - contract BIO4-CT95-0161

    A surrogate method for comparison analysis of salivary concentrations of Xylitol-containing products

    Get PDF
    Background: Xylitol chewing gum has been shown to reduce Streptococcus mutans levels and decay. Two studies examined the presence and time course of salivary xylitol concentrations delivered via xylitol-containing pellet gum and compared them to other xylitol-containing products. Methods: A within-subjects design was used for both studies. Study 1, adults (N = 15) received three xylitol-containing products (pellet gum (2.6 g), gummy bears (2.6 g), and commercially available stick gum (Koolerz, 3.0 g)); Study 2, a second group of adults (N = 15) received three xylitol-containing products (pellet gum, gummy bears, and a 33% xylitol syrup (2.67 g). For both studies subjects consumed one xylitol product per visit with a 7-day washout between each product. A standardized protocol was followed for each product visit. Product order was randomly determined at the initial visit. Saliva samples (0.5 mL to 1.0 mL) were collected at baseline and up to 10 time points (~16 min in length) after product consumption initiated. Concentration of xylitol in saliva samples was analyzed using high-performance liquid chromatography. Area under the curve (AUC) for determining the average xylitol concentration in saliva over the total sampling period was calculated for each product. Results: In both studies all three xylitol products (Study 1: pellet gum, gummy bears, and stick gum; Study 2: pellet gum, gummy bears, and syrup) had similar time curves with two xylitol concentration peaks during the sampling period. Study 1 had its highest mean peaks at the 4 min sampling point while Study 2 had its highest mean peaks between 13 to 16 minutes. Salivary xylitol levels returned to baseline at about 18 minutes for all forms tested. Additionally, for both studies the total AUC for the xylitol products were similar compared to the pellet gum (Study 1: pellet gum - 51.3 [micro]g.min/mL, gummy bears - 59.6 [micro]g.min/mL, and stick gum - 46.4 [micro]g.min/mL; Study 2: pellet gum - 63.0 [micro]g.min/mL, gummy bears - 55.9 [micro]g.min/mL, and syrup - 59.0 [micro]g.min/mL). Conclusion: The comparison method demonstrated high reliability and validity. In both studies other xylitol-containing products had time curves and mean xylitol concentration peaks similar to xylitol pellet gum suggesting this test may be a surrogate for longer studies comparing various products.NIDCR-NIH U54 DE14254; Head Start, HRSA 90YD0188/03; and MCHB, HRSA R40MC03622-03

    Molecular Characterization of a Fus3/Kss1 Type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1

    Get PDF
    Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst

    Self organising maps for visualising and modelling

    Get PDF
    The paper describes the motivation of SOMs (Self Organising Maps) and how they are generally more accessible due to the wider available modern, more powerful, cost-effective computers. Their advantages compared to Principal Components Analysis and Partial Least Squares are discussed. These allow application to non-linear data, are not so dependent on least squares solutions, normality of errors and less influenced by outliers. In addition there are a wide variety of intuitive methods for visualisation that allow full use of the map space. Modern problems in analytical chemistry include applications to cultural heritage studies, environmental, metabolomic and biological problems result in complex datasets. Methods for visualising maps are described including best matching units, hit histograms, unified distance matrices and component planes. Supervised SOMs for classification including multifactor data and variable selection are discussed as is their use in Quality Control. The paper is illustrated using four case studies, namely the Near Infrared of food, the thermal analysis of polymers, metabolomic analysis of saliva using NMR, and on-line HPLC for pharmaceutical process monitoring
    • …
    corecore