456 research outputs found
Guiding and reflecting light by boundary material
We study effects of finite height and surrounding material on photonic
crystal slabs of one- and two-dimensional photonic crystals with a
pseudo-spectral method and finite difference time domain simulation methods.
The band gap is shown to be strongly modified by the boundary material. As an
application we suggest reflection and guiding of light by patterning the
material on top/below the slab.Comment: 12 pages, 7 figure
A Numerical Study on Temperature Distribution of Line Heated Anisotropic Carbon Fiber Composites
Earlier we have described the various uses of infrared line scanner based thermal nondestructive testing equipment [1]. Time constants of measurements made with these kind of equipment are very suitable for testing carbon fiber composites. Scanning a line heat source over a sample surface causes a nonuniform temperature distribution in the sample. In addition to the heat flow normal to the surface, lateral heat flow exists in the surface plane. In the case of carbon fiber composites with a specific oriented structure, the surface temperature distributions depend on the direction where the line source moves. Generally, this is true of any sample having anisotropic thermal conductivity. In oriented carbon fiber composites the bulk thermal conductivity can be considered anisotropic, because the heat transfer in the composite is different in the direction of the fibers compared to perpendicular directions [2,3]. Varis et al. have discussed these phenomenon briefly with the testing of carbon fiber tubes using numerical methods [4]. Here, we represent a more detailed numerical analysis of the effects of line heating on a sample having anisotropic thermal conductivity
Collaboration in the Semantic Grid: a Basis for e-Learning
The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning
Planck-LFI radiometers' spectral response
The Low Frequency Instrument (LFI) is an array of pseudo-correlation
radiometers on board the Planck satellite, the ESA mission dedicated to
precision measurements of the Cosmic Microwave Background. The LFI covers three
bands centred at 30, 44 and 70 GHz, with a goal bandwidth of 20% of the central
frequency.
The characterization of the broadband frequency response of each radiometer
is necessary to understand and correct for systematic effects, particularly
those related to foreground residuals and polarization measurements. In this
paper we present the measured band shape of all the LFI channels and discuss
the methods adopted for their estimation. The spectral characterization of each
radiometer was obtained by combining the measured spectral response of
individual units through a dedicated RF model of the LFI receiver scheme.
As a consistency check, we also attempted end-to-end spectral measurements of
the integrated radiometer chain in a cryogenic chamber. However, due to
systematic effects in the measurement setup, only qualitative results were
obtained from these tests. The measured LFI bandpasses exhibit a moderate level
of ripple, compatible with the instrument scientific requirements.Comment: 16 pages, 9 figures, this paper is part of the Prelaunch status LFI
papers published on JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/jins
The effect of microstructure on mechanical properties of HVOF sprayed WC-CoCr composite coatings
This study aims for deeper understanding of the composition and phase changes occurring during HVOF spraying of the powder to WC-CoCr coatings. Also, the effect of lamellar microstructure on the mechanical properties is studied. Compositional and microstructural features are studied by means of X-ray diffraction, XRF, FE-SEM and TEM (EDX, EELS). Mechanical properties are mainly studied by different instrumented indentation and nanoindentation techniques. The use of two new fracture parameters, complementing the fracture toughness value of the coating, are proposed and examined. Higher load range indentations are used to measure cross-sectional and surface hardness, elastic modulus and fracture toughness of the coatings. Mechanical properties of individual phases are studied by nanoindentation. To our knowledge this is the first time that the mechanical properties of this amorphous/nanocrystalline matrix are studied. ICP (In-situ Coating Property) sensor, developed for quality control and residual stress evaluation, is also used to measure the elastic modulus and coefficient of thermal expansion (CTE) of the coatings. Abrasion wear resistance of the coatings are studied according to standard ASTM G 65D.
Because of the brittle nature of HVOF coatings, the main focus of this study is in the effects of coating microstructure on fracture toughness, and on crack initiation and propagation resistance. It is shown that even when two similar coatings have equal indentation fracture toughness values, the critical crack initiation loads may be very different. This new parameter is expected to be extremely useful in the evaluation of the coating performance under loading conditions
The linearity response of the Planck-LFI flight model receivers
In this paper we discuss the linearity response of the Planck-LFI receivers,
with particular reference to signal compression measured on the 30 and 44 GHz
channels. In the article we discuss the various sources of compression and
present a model that accurately describes data measured during tests performed
with individual radiomeric chains. After discussing test results we present the
best parameter set representing the receiver response and discuss the impact of
non linearity on in-flight calibration, which is shown to be negligible.Comment: this paper is part of the Prelaunch status LFI papers published on
JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst; This is an
author-created, un-copyedited version of an article accepted for publication
in JINST. IOP Publishing Ltd is not responsible for any errors or omissions
in this version of the manuscript or any version derived from it. The
definitive publisher authenticated version is available online at
10.1088/1748-0221/4/12/T12011
Evaluating the impact of pyrethroid insecticide resistance on reproductive fitness in Sitobion avenae
Resistance to insecticides used to control pests is an issue of increasing concern for agriculture. The grain aphid, Sitobion avenae, is a pest of cereals and grasses worldwide, and one of growing concern due to the evolution of resistance to certain insecticides. Resistance confers benefits to insects by enabling them to survive exposure to insecticide compounds; however, the mutations conferring resistance may also penalise the insect in pesticide-free environments due to fitness costs associated with the new phenotype. Here we tested the hypothesis of a reproductive penalty linked to the knockdown resistance mutation (kdr) to pyrethroid insecticides. The mutation occurs predominantly in a single SA3 clone. To date, only heterozygous-resistant forms (kdr-SR) have been detected in populations in Ireland and the UK, and this suggests that a fitness penalty may preclude the formation of both male and female heterozygous-resistant sexual forms. By designing an experiment which included a resistant and a non-resistant clone, we were able to simulate reduced daylight and temperature conditions which, in nature, trigger sexual reproduction and therefore study the responses of each clone. This allowed us to detect the switch from asexual females to sexual females and males and report on the conditions associated with the production of sexual forms. The results showed that both aphid clones were able to produce sexual forms with no difference in the onset of sexual reproduction, although reproductive strategies differed between clones. The later onset of male forms in the SA3 clone may decrease the likelihood of mating interactions to create fully resistant (kdr-RR) genotypes and this may constitute a fitness penalty due to pyrethroid resistance
Advanced modelling of the Planck-LFI radiometers
The Low Frequency Instrument (LFI) is a radiometer array covering the 30-70
GHz spectral range on-board the ESA Planck satellite, launched on May 14th,
2009 to observe the cosmic microwave background (CMB) with unprecedented
precision. In this paper we describe the development and validation of a
software model of the LFI pseudo-correlation receivers which enables to
reproduce and predict all the main system parameters of interest as measured at
each of the 44 LFI detectors. These include system total gain, noise
temperature, band-pass response, non-linear response. The LFI Advanced RF Model
(LARFM) has been constructed by using commercial software tools and data of
each radiometer component as measured at single unit level. The LARFM has been
successfully used to reproduce the LFI behavior observed during the LFI
ground-test campaign. The model is an essential element in the database of LFI
data processing center and will be available for any detailed study of
radiometer behaviour during the survey.Comment: 21 pages, 15 figures, this paper is part of the Prelaunch status LFI
papers published on JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/jins
The Planck-LFI flight model composite waveguides
The Low Frequency Instrument on board the PLANCK satellite is designed to
give the most accurate map ever of the CMB anisotropy of the whole sky over a
broad frequency band spanning 27 to 77 GHz. It is made of an array of 22
pseudo-correlation radiometers, composed of 11 actively cooled (20 K) Front End
Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between
the two parts is made with rectangular Wave Guides. Considerations of different
nature (thermal, electromagnetic and mechanical), imposed stringent
requirements on the WGs characteristics and drove their design. From the
thermal point of view, the WG should guarantee good insulation between the FEM
and the BEM sections to avoid overloading the cryocooler. On the other hand it
is essential that the signals do not undergo excessive attenuation through the
WG. Finally, given the different positions of the FEM modules behind the focal
surface and the mechanical constraints given by the surrounding structures,
different mechanical designs were necessary. A composite configuration of
Stainless Steel and Copper was selected to satisfy all the requirements. Given
the complex shape and the considerable length (about 1.5-2 m), manufacturing
and testing the WGs was a challenge. This work deals with the development of
the LFI WGs, including the choice of the final configuration and of the
fabrication process. It also describes the testing procedure adopted to fully
characterize these components from the electromagnetic point of view and the
space qualification process they underwent. Results obtained during the test
campaign are reported and compared with the stringent requirements. The
performance of the LFI WGs is in line with requirements, and the WGs were
successfully space qualified.Comment: this paper is part of the Prelaunch status LFI papers published on
JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins
Barriers and facilitators for treatment-seeking for mental health conditions and substance misuse:Multi-perspective focus group study within the military
Background Globally, millions are exposed to stressors at work that increase their vulnerability to develop mental health conditions and substance misuse (such as soldiers, policemen, doctors). However, these types of professionals especially are expected to be strong and healthy, and this contrast may worsen their treatment gap. Although the treatment gap in the military has been studied before, perspectives of different stakeholders involved have largely been ignored, even though they play an important role. Aims To study the barriers and facilitators for treatment-seeking in the military, from three different perspectives. Method In total, 46 people participated, divided into eight homogeneous focus groups, including three perspectives: soldiers with mental health conditions and substance misuse (n = 20), soldiers without mental health conditions and substance misuse (n = 10) and mental health professionals (n = 16). Sessions were audio-taped and transcribed verbatim. Content analysis was done by applying a general inductive approach using ATLAS.ti-8.4.4 software. Results Five barriers for treatment-seeking were identified: fear of negative career consequences, fear of social rejection, confidentiality concerns, the ‘strong worker’ workplace culture and practical barriers. Three facilitators were identified: social support, accessibility and knowledge, and healthcare within the military. The views of the different stakeholder groups were highly congruent. Conclusions Barriers for treatment-seeking were mostly stigma related (fear of career consequences, fear of social rejection and the ‘strong worker’ workplace culture) and this was widely recognised by all groups. Social support from family, peers, supervisors and professionals were identified as important facilitators. A decrease in the treatment gap for mental health conditions and substance misuse is needed and these findings provide direction for future research and destigmatising interventions
- …